

FLUKE

Introduction

The 9010A Micro-System Troubleshooter makes fault
isolation on micro-system boards both simple and easy.
The reason is that its built-in test and troubleshooting
functions allow you quickly to identify bus-related
faults. You can also use the 9010°s programmable
features to troubleshoot circuits both on and off the
bus.

For example, with a set of callable programs to perform
guided fault isolation (GFI) you can save money by
utilizing lower-skilled operators to find faults.

The purpose of this bulletin is to present an approach
to performing GFI in a test environment. It outlines
some of the more important considerations to the
approach. It also presents a set of 9010A programs
which you can use in setting up and performing GFI
on your UUT (unit under test). Finally, this bulletin
explains how you can integrate the programs into your
test and troubleshooting situation.

We estimate that the information contained in this
bulletin can save you several weeks of program
development time. The programs contained herein
should work immediately in your application without
modification. However, if you have questions or
difficulties with any of the items discussed in this
bulletin, please refer them to your Fluke Sales Office.

What Is Guided Fault Isolation?

GFI is a procedure that guides an operator step-by-
step through troubleshooting a UUT. It requires
transfer of a technician’s knowledge of a circuit to a
programmable instrument or computer so that less
skilled operators can do the testing and troubleshooting.
Typically, a computerized GFI procedure will prompt
the operator to probe a circuit node, stimulate the
circuit, take a reading via the probe, then prompt the
operator to take some other action based on the results.
This is done sequentially for each node to be probed.

A 9010A program can help perform GFI in two ways.
First, a GFI step can be incorporated into a program
just occasionally, to verify proper circuit operation at a
given node. The purpose of this method is to perform
testing, not troubleshooting. Second, there can be a
program which does nothing but GFI steps to
troubleshoot a UUT which failed the test program.

If you are a typical user, you will undoubtedly have use
for GFI at one time or another for production or
service. There are likely to be times when you will want
to rely upon it heavily because it is needed to compare
operation of a known-good board to that of a known-
bad one.

©1981, John Fluke Mfg. Co., Inc., all rights reserved

However, there are several reasons why GFI may not
be needed in your application. Extremely simple
UUT’s may be so easy to troubleshoot that GFT is
impractical. Also, if the UUT has a high component
count it may be too time-consuming to have the
operator probe each and every node. An in-circuit or
bed-of-nails tester might be better suited to a task such
as initial turn-on of production boards. Further, some
situations lend themselves more readily to immediate
mode 9010A troubleshooting than to GFI.

How Should I Approach Testing With The
9010A?

"There are some important things to consider when you

start testing and troubleshooting with the 90104,
especially when using programs. The following
paragraphs outline some of these importances and
suggest how to avoid related pitfalls.

Troubleshooting Sequence

During troubleshooting, the technician will usually
progress in a sequence through the lowest level circuit
known to be failing. The sequence would begin with a
check of those items which would most catastrophically
affect circuit operation. It would end with those least
likely to cause the failure, or most difficult to test. The
typical sequence might be as follows:

1. Power supplied to the circuit;

2. Clock and timing supplied to the circuit;
3. Other inputs to the circuit;

4. Clock and timing internal to the circuit;
5. Data paths within the circuit

Because the power supply and clock are analog circuits
they should be measured with analog instruments
before troubleshooting with the 9010A.

Automatic Checks

Nevertheless, the 9010A can grant a degree of
confidence that clock and power are good. For example,
it notifies you when clock is missing by displaying
POD TIMEOUT. It signals absence of power by
displaying UUT POWER FAIL, and power more than
10% too high or low by displaying BAD POWER
SUPPLY. Additionally, the probe lights indicate
whether the logic levels are within 10% of being below
.8 Volts (green), above 2.4 Volts (red), or between .8
and 2.4 Volts for more than 100 nanoseconds.

Setup

When using a program to test your UUT you may find
that the 9010A issues a POD TIMEOUT message
occasionally even though there is nothing wrong with
the pod, the 9010A mainframe, or the UUT. This

FLUKE

could occur because a direct memory access (DMA)
circuit keeps holding the pod processor so that it can’t
communicate often enough with the 9010A mainframe.
It could happen because the UUT clock is too slow to
allow proper pod communication with the mainframe.
Or it could be that a forcing line (such as HOLD) is
holding the processor in a condition that keeps it from
running,

To remedy this, you can use SETUP to change the
time out parameter to a larger number, and/or disable
the relevant processor forcing lines until the timeout
messages no longer occur. Then, when saving programs
on a tape, the appropriate setup conditions will be
saved also.

Usually, it is a good idea not to disable forcing lines
without also disabling any circuits or components in the
UUT which use the lines in normal operation. The
reason is that disabling a forcing line (such as READY
or HOLD) may prevent portions of the UUT from
being testable because the 9010A cannot respond to the
line when it is disabled except while performing RUN-
UUT.

Other Test Equipment

Occasionally, components can be marginal or faulty
without being detected by the 9010A. For example, the
clock frequency could be much too fast or too slow, or
the clock could have poor rise and fall times. Or, the
voltage within a circuit area could be high enough to
trigger the probe, but low enough to cause mysterious
failures, and still not be detected at the processor
socket.

For these reasons, it is appropriate to have a.scope and
voltmeter available to verify that voltage and clock
characteristics are correct. And, it is usually a good idea
to check those characteristics before troubleshooting
other circuits.

You might occasionally have trouble identifying a single
failing component which is connected to a node
common to several other components. An example of
this is a circuit which buses several components
together. Therefore, it is a good idea to have a current
detection probe or low resistance detection instrument,
such as the Fluke 8012A, available for use with your
9010A to isolate the component creating the “stuck
node” on the bus.

Use of the Probe .

It is important to know that the 9010A takes signatures
only in synchronization with processor read/write
timing: the pod processor’s placement of a valid address
or data onto the bus. Some UUT circuits are not so
synchronized. As an example, DMA circuits use the

address and data buses ONLY when the processor is
not using them.

However, you can use the 9010A’s logic history and
event count features to troubleshoot these and other
asynchronous circuits. There are estimates that more
than 80% of digital failures consist of a node stuck high
or low. Therefore, if the 9010A shows a node to have
high and low logic history during a test, then you can
generally assume that node to be good. And you can
use the event count feature to verify proper operation
of devices such as switches, relays, and low-frequency
(less than 4500 Hz) devices.

How Do I Structure My Programs
For GFI?

A Workable Approach

Although there are many ways to structure test and
troubleshooting programs, we have found one approach
particularly useful. Generally, that approach is as
follows:

1. Develop the programs to test the entire UUT.

2. Develop programs which setup and stimulate each
failing circuit so that the 9010A can take readings
while the operator probes the circuit.

3. Determine the fault troubleshooting tree for the
UUT. The tree should direct the program/operator
from failure symptoms to the area or component of
the circuit to test.

4. Gather probe data at relevant nodes on a known-
good UUT as dictated by the troubleshooting tree.

5. Incorporate the probe data as expected results in a
test-and-probe program which guides the operator
step-by-step through the UUT troubleshooting
procedure.

What Test Programs Should Do

The test program should first perform AUTO-TEST
(BUS, ROM, and RAM-SHORT TEST). Next, it
should set up and test input/output circuits. Finally, it
should test circuits which are asynchronous to bus
timing. It should ask the operator what circuit to test in
cases where the operator may already have determined
a fajlure to exist in a particular circuit such as a
display.

If a test fails, or if the operator must probe a circuit as
part of a test, then there should be programs available
which perform GFI automatically. To accomplish this,
a GFI Supervisor (or the main test program) should set
parameters into 9010A registers which identify the item
to be probed and expected results. Then, it should call

FLUKE

Run the Test

GFi SUPERVISOR
(set parameters for
each point to be
probed, in sequence)

GFI CONTROL
(prompt operator,
take reading,
check results,
loop on failure)
GF! Supervisor
GFI Control

Run Next Test

Figure 1. Typical Test and GFI Process

a GFI Control program which uses ancilliary programs
as needed to prompt the operator to probe the circuit,
take the reading, check it for correctness, and send the
pass/fail results to the calling program. It should do
this for each point to be probed, thus guiding the
operator through the troubleshooting process. Figure 1
illustrates this. It is the same technique we have used
in the programs in this bulletin.

Table 1. Typical Test and GFI Program Flow

Main Test Program

1. Display Test Header.
2. Delay to see 9010A display.

3. Display message: “ENTER DESIRED TEST NUMBER”
(operator refers to test number list); or start a process of
automatically selecting the tests to be performed in a
predetermined appropriate sequence.

4. Branch to selected test label.

5. Test label: perform selected test (e.g., the display circuit). Note:
this step can have the operator probe a node by performing
steps 2a and b of the GFI Supervisor.

6. Did the selected test pass?

YES: loop to item 3 until all tests have been performed then
end.

NO: execute GFI supervisor program for failing test.
7. End.
GFI Supervisor Program For Failing Circuit
1. Display message: Circuit Test header.
2. For each point to be probed:
a. Set registers C, 8, and 9.

b. Execute the GFI Control program to prompt the operator,
take the reading, display the results, and loop on failures.

c. Did operator press the CLEAR key?
NO: Loop to item 2 to probe next point.
YES: End the GFI activity.

The GFI programs are set up so that your test program
(or the GFI Supervisor) must set probe information
parameters into registers C, 8, and 9 before calling the
GFI Controller to enable the operator to probe a point.
The GFI Controller uses the parameters to determine
display prompts and expected readings for that point.
The GFI programs leave these registers unchanged, but
do modify all the other global registers. Subsequent
paragraphs describe the required contents of the
registers. Your program flow might resemble that in
Table 1.

How Does The 9010A Perform Guided
Fault Isolation?

The 9010A uses its probe and synchronization
capabilites with the READ PROBE function to
determine what logic activity has occurred at the point
being probed. The READ PROBE operation allows the
9010A to glean logic level history, event counts, and
signatures from the circuit as described in the 9010A
operator manual. The 9010A programs in this bulletin
use these capabilities to do the following:

1. Write data to relevant addresses as necessary to
enable devices in the circuit being probed. An
example of this is to write data to an input-output
circuit such as a Programmable Interface Adapter
chip (PIA) to set up its registers for either input,
or output, or both.

2. Instruct the operator to place the probe on a par-
ticular component lead in the circuit, and continue
only when the operator has done so.

3. Select the appropriate synchronization mode
(Address, Data, or Free-run), and perform a
READ PROBE operation. This clears the present
probe information and initiates the 9010A process
of monitoring the logic activity at the probe tip.

4. Write or read data to/from the circuit being
checked as necessary to stimulate it. In the case of
address and data synchronization modes, this
allows the probe to gather data during operations
which are synchronous to Address and Data valid
periods on the processor bus. This step may not be
necessary in the case of timing, direct memory
access (DMA), and certain other circuits because
they are asynchronous to or operate independent of
active microprocessor timing.

5. Perform a READ PROBE to complete the data
gathering.

6. Separate the fields of register 0 to isolate the
signature, event count, or logic level history, then

compare one or more of them to a predetermined,
known-good value.

FLUKE

7. Display the results for the operator, and give the
operator such options as aborting the test, looping
on the failure, or skipping to the next point to be
probed. During looping, the operator can heat or
cool the circuit, flex the board, or do other actions
to discover the cause for intermittent failures.

8. Inform the operator of one or more suspected bad
components in the event of a solid failure.

9. Continue with the preceding steps through the
entire circuit until the program has isolated the
failing component.

Program Examples

Tables 2 and 5 list a universal set of 910A programs
which you can incorporate into your 9010A
troubleshooting scheme to perform guided fault
isolation. The programs are generic in that they can be
used for almost any UUT. They use about 3000 bytes,
leaving plenty of room for your test programs. The
programs can be modified easily if changes are needed
for your application. The remainder of this bulletin
explains the programs in detail and describes how to
use them in your troubleshooting environment.

We have used several small programs to perform the
probe-and-test function for GFI. Each program
performs a specific function. This makes the GFI
program set modular and much more easily readable
than would be a large, monolithic program. You will
have to write one or more programs of your own to
supervise the GFI activity. You may use any otherwise
unused program numbers for them; our sample
program listings use program number 20 with the name
“GFI Supervisor.”

Before developing program 20, you will be running
program 22 to get readings from a known-good UUT
and display parameters for registers C, 8, and 9. In
developing program 20, you will enter steps which
preset those parameters into the registers and execute
program 21. Program 21 will use the parameters to
determine how to test the circuit. A subsequent topic
describes how the parameters are structured and how to
derive them. Once you have taken all the known-good
readings needed to troubleshoot your UUT, you can
delete program 22 and grant yourself another 1379
bytes of memory.

Table 2. Summary of Guided Fault Isolation Programs

Number Name And Description

0 MAIN TEST - Your program to perform a functional test of
your UUT. When it fails, it should give the operator the option
of performing GFI. It would call program 20 and others like it
to do the GFI. Or, it would contain the functions of program
20 itself.

3 KEY ENABLE - Toggles the enabled/disabled state of the
asynchronous keyboard interrupt for programs 4, 21, 22, and 24.

4 KEY WAIT - Halts program 22 until the operator presses any
key except STOP.

9 DELAY - Delays the program to give the operator time to read
the display in programs 21 and 22.

20 SUPERVISOR - Supervises the flow and sequence of the GFI
tests. This program sets up parameters in registers to identify:
which programs to execute to setup and stimulate the circuit
under test; the point to be probed; whether to check signature,
count, or logic history; what sync mode to use; and up to two
suspected faulty components. It then calls program 21 for each
point to be probed to control the test.

21 CONTROLLER - Examines parameters passed by program 20
to: execute the UUT setup program; display point to be probed
and expected results; initiate the probing operation; compare
actual and expected results; allow looping on failure; display
suspected faulty components.

22 PACKER - (Not used in the final program) - Prompts operator
for information about the node to be probed; stimulates and
gathers data from a known-good circuit under test just as
program 21 would in an actual GFI situation; displays relevant
parameters for registers C, 8, and 9 to be keyed into GFI
Supervisor program 20.

23 READER - Uses parameters in registers C and 9 to select the
sync mode (address, data, free-run), call the program to
stimulate the circuit under test, and take the selected type of
reading (signature, logic level history, or event count) for
programs 21 and 22.

24 MONITOR - Performs READ-PROBES in free-run sync for
program 21 to determine whether the probe is touching the
circuit. Loops continuously until 10 successive readings indicate
the probe is properly placed. Used to detect probe in the
circuit, and out of the circuit.

25 D-HISTORY - Displays expected and actual logic history for
programs 23, 26.

26 D-EXPECTED - Displays test mode (signature, history, count)
and expected results for programs 20 and 22.

27 D-DEVICE - Displays one of 15 types of components (U, R,
C, etc.) for programs 21 and 22. Used for device to be probed
and suspected bad devices.

n SETUP/STIMULUS - Setup/stimulate the circuit under test
for probing. Program numbers (any unused ones of your
choosing) are set in register C by program 22 and 21.
Technician writes them (not provided in this bulletin).

FLUKE

Figure 2 shows the basic interaction of the GFI
programs. It does not show the delay routines because
they are inconsequential to the flow. It also does not
show program 22 because it is not used during normal
GFI testing.

Main Test

a

| GFI Supervisor (ZO)J

a

Monitor (24 J«>—| GFI Control @1) Setup (n)

A |

[
Key Wait (3)/ |Reader 23) [D- Expected (26) | |D-Device(27)
Enable {4)

A

| Stimulus (n+) I l D-History (25)J

Figure 2. Interaction of GFI Programs.

How Do I Set Up To Use The Programs?

Step One: Configure the System

The only materials needed to perform GFI on your
board are the 9010A with pod and probe, your known-
good unit under test (UUT), and the GFI programs on
a 9010A tape. The 9010A, pod, probe, and your UUT
must be configured as described in the 9010A operator
manual. Refer to that manual as necessary to prevent
causing damage to the 9010A, the pod, or your UUT.

Step Two: Store the GFI Programs into 9010A
Memory

To store the GFI programs into your 9010A, you can
key them into your 9010A. However, to save time you
can load them in from the pre-recorded Guided Fault
Isolation cassette tape, available through your Fluke
Sales Office. If you decide to key them in, compare
them line-by-line with the listings to ensure they are
correct.

Step Three: Write Programs to Setup and
Stimulate the Circuit Under Test

The GFI programs allow you to specify two program
numbers in your Main Test or Supervisor program, a
setup program number, and a stimulus program
number. The setup program sets up conditions for the
circuit under test. For example, it might configure an

input/output circuit such as a PIA to transfer data to a
peripheral device.

The stimulus program stimulates the circuit under test
while the operator is probing the circuit to find faults.
For example, once the setup program has initialized the
PIA, the stimulus program might perform write
operations to send data through the circuit.

As another example, the setup or stimulus program
might stop the test and prompt the operator to set a
switch or perform some other action, then to press
CONT when ready to proceed. This grants your GFI
activity the flexibility needed for complete operator and
UUT interaction.

There are cases where you will not need to specify one
or both of these programs. An example would be a
circuit which is always passing timing signals without
being setup or stimulated by the 9010A. In this case,
the GFI routine can simply look for high and low logic
activity at nodes in the circuit without performing a
setup or stimulus program.

Step Four: List Information About the Points to
Be Probed

After a study of the circuit and your testing approach,
you will want to write a list of the circuit components
you wish to probe during the test. The GFI programs
will need that and other information as follows:

1. The component type and number (reference
designator, such as U12 for integrated circuit #12,
SW2 for switch #2, etc.), and pin number to probe.
Program 27 allows you to specify up to 15 types of
devices to be probed or identified as suspected bad
devices. You may modify the program to allow
others of your choosing (see the program 27
listing). Currently, 13 devices are implemented.
They are: U (integrated circuit), Q (transistor), R
(resistor), C (capacitor), CR (diode), SW (switch),
LED (light emitting diode), KEY (pushbutton or
key), K (relay), P (plug), J (jack), X (component
socket), and BP (backplane).

These mnemonics are for display nomenclature only,
so that nothing prevents you from calling an
integrated circuit a resistor.

2. The first and second components (type and
number) you suspect to be bad if the test fails.

3. Whether to take signature, logic history, or event
count, and whether to use Address, Data, or Free-
run sync.

4, What programs to execute in order to set up the
circuit to be tested and to stimulate the circuit
during the data gathering process.

FLUKE

Step Five: Run PACKER Program 22

Program 22 prompts you to enter information from the
list in step four, sets up and stimulates the circuit while
gathering the selected information, then packs the
information together and displays appropriate contents
for registers C, 8, and 9. It also sends the register
values to the RS-232 interface for printing or display
on a terminal.

The program displays prompts for operator actions as
follows:

L.

Prompt: PARAMETER PACK PROGRAM
(display Program Reader)
Action: none

. Prompt: DEVICE TO PROBE <1-F,ENTER>

Action: Press a hex key 1 through D to select the
type of component on which to place the probe tip,
then press ENTER. If you make a mistake or wish
to view the optional selections, simply press
another hex key before pressing enter. Key entries
are: 1=U, 2=Q, 3=R, 4=C, 5=CR, 6=SW, 7=LED,
8=KEY, 9=K, A=P, B=], C=X, D=BP. Zero is
not allowed; E and F are, but are currently unused.

Prompt: ENTER DEVICE NUMBER <256 = __.
Action: Enter a decimal value from 0 through 255
as the number of the device to probe. The GFI
programs will use this to display the reference
designator of the probed device, such as U2l, J5,
etc.

. Prompt: ENTER PIN NUMBER <256 = _

Action: Enter a decimal value from 0 through 255
as the pin number of the device to be probed. The
GFI programs will use this to display the reference
designator’s pin number to be probed, such as U21
PIN 7, etc.

. Prompt: 1ST SUSPECT DEVICE TYPE <0-

F,ENTER>

Action: Press a hex key to select the type of
component you most suspect is the cause of a
failure at the node described by prompts 1-3, then
press ENTER. The code types are the same as for
prompt 2. If you press ENTER only, the program
will assume there are no suspect devices and
advance to prompt 9.

Prompt: 1ST SUSPECT NUMBER <256 = _
Action: Enter a decimal value from 0 through 255
as the number of the device in prompt 5. The GFI
programs will use this to display the reference
designator of the first suspected bad device, such as
U21, R5, etc.

10.

11.

12.

Prompt: 2ND SUSPECT DEVICE TYPE <0-
F,ENTER>

Action: Press a hex key to select the device type
for the next component you most suspect is the
cause of a failure at the node described by prompts
1-3, then press ENTER. The code types are the
same as for prompt 2. If you press ENTER only,
the program will assume there is no second suspect
device and advance to prompt 9.

Prompt: 2ND SUSPECT NUMBER <256 =
Action: Enter a decimal value from 0 through 255
as the number of the device in prompt 7. The GFI
programs will use this to display the reference
designator of the second suspected bad device, such
as U23, C7, etc.

. Prompt: PRESS 0=SIG, 1=LEVEL, 2=COUNT

Action: Press 0 for taking signatures, 1 for logic
level history, or 2 for event counts. There is no
need to press ENTER. The GFI programs will use
this to select the reading mode for gathering
selected read-probe information from the point
being probed. If you press 2 the program will force
FREE-RUN sync mode (see prompt 10) and
advance to prompt 11.

Prompt: PRESS 0=FREE 1=ADRS 2=DATA
SYNC

Action: Press 0, 1, or 2 to enable free run, address,
or data sync mode. There is no need to press
ENTER. The GFI programs will use this to set
the sync mode for gathering read-probe
information from the point being probed. Selecting
free run sync along with signature readings is not
allowed and will return you to prompt 9.

Prompt: SETUP PGM =

Action: Enter a decimal value from 0 to 99 (e.g.,
50) as the number of the program to be executed to
set up the UUT circuit being tested. If you press
ENTER only or enter a value of 0, then you are
specifying that there is no setup program. If the
program does not exist, the PACKER program will
later abort with FATAL-PROGRAM NOT
FOUND message. You will need to create the
missing program and re-run program 22.

Prompt: SETUP PGM=50, STIMULUS PGM=_
Action: Enter a decimal value from O to 99 as the
number of the program to be executed to stimulate
the UUT while the operator is probing the circuit
being tested. If you press ENTER only or enter a
value of 0, then you are specifying that there is no
stimulus program. If the program does not exist,

FLUKE

the PACKER program will abort with FATAL-
PROGRAM NOT FOUND message. You will
need to key in the missing program and re-run
program 22.

If you specify no stimulus program, then the actual
GFI Controller will perform two immediately
successive READ-PROBE operations (about 20
milliseconds apart) without exercising the UUT.
This might be useful for monitoring event counts
or logic history at node which has a continuous
stream of pulses.

13. Prompt:
U21-7 COUNT = cg,
CONT displays count
or U21-7 SIG =ssss, CONT displays hex signature
or U21-7 LEVEL = hxl,
CONT displays logic level
history
or U21-7 LEVEL = NONE,
CONT

Comment: The program has executed the setup
program if specified, and is running a loop which
executes the stimulus program (if specified) for the
known-good UUT while you are probing the
specified component in the circuit. The display
shows the reading taken. This allows you to see
correct readings from a known-good UUT before
performing GFI on a suspected bad UUT.

Action: Press CONT to stop looping and proceed
to prompt 14, or CLEAR to return to prompt 9
and select different stimulus/exercise programs and
sync/reading modes. DO NOT press CONT nor
remove the probe unless one of the above messages
is being displayed, signifying that the program has
stored a valid reading. The reading will be needed
in prompt 14.

At this point you can probe other components in
the circuit as well as the one displayed. History and
signature readings are only valid if they are stable
and thus predictable. Therefore, let the program
loop a few times.

If you are taking signatures and they are not stable,
then the logic activity at the point being probed is
asynchronous to microprocessor bus timing. You
will either have to change the stimulus program or
check for logic history or event counts rather than
signatures at that node.

The count can represent more than 128 events
because the 128-event counter is circular. Between
two successive read-probe operations, it will
overflow at frequencies above about 4500 Hertz.

14.

Also, variations in frequency of the 9010A crystal
and the probed signal, and the 20-millisecond
window between successive read-probes, combine
to vary the displayed count, especially when you
probe a high frequency signal asynchronous to bus
timing. Therefore, use event counts only for very
low frequency asynchronous signals, or for any
signals which are synchronous to bus timing or can
produce a controlled, predetermined number of
events.

The GFI programs will allow a test to pass if the
UUT count is within a specified range. Therefore,
when observing hex counts during prompt 13,
record the minimum and maximum counts dis-
played. Prompt 14 requests them. Usually, the
range is small, such as 37 minimum to 42 max-
imum. When near the counter wrap point, the
range will seem large (such as 3 minimum to 7C
maximum) when it is actually small (7C minimum
to 3, actually 83 hex, maximum).

Although the range could actually be large, usually
you should record the higher value as the minimum
and the lower value as the maximum. The test will
pass if the reading is between the minimum and
the maximum, inclusive.

Prompt:
ENTER SIGNATURE ssss =
display last signature read
or ENTER LVL <4,2,1=L,X,H>v = _
display code for last level
or ENTER COUNT MIN nn =
display lowest count read
then ENTER COUNT MIN nn = 23, MAX xx= _
display highest count read

Comment: One of these messages is displayed in
response to pressing CONT at prompt 13,
depending on the type of reading taken. The
message is prompting you to enter the last value
read during the loop. The program saved it,
assuming it was stable.

Action: For signatures or level, press ENTER only
to use the last value read. For count min, press
ENTER only to use the lowest count read during
the loop taking readings. For count max, press
ENTER only to use the highest count read.
Otherwise, key in the desired value and press
ENTER. Use hex for signature and level; decimal
for counts.

If you enter a value in excess of FFFF for a
signature, 7 for level history, or 127 for count, then
the program will use that entry as the last value

FLUKE

read, destroying the actual last value read, and will
request the entry anew.

When entering the code for logic level, use the sum
of the bit values: High=1, Invalid[X]=2, Low=4.
For example, if Low and Invalid are read, the code
is 4(Low) + 2(Invalid)=6.

Table 3. Format for Registers C, 8, and 9
Before Executing Program 21

Note: all values are shown in hexadecimal form. Program numbers,
device numbers, and pin numbers are decimal values converted to
hex.

Register C = PPSS, where
PP = setup program number
SS = stimulus program number

Register 8 = VVVVDDPP, where
VVVV = the expected value in the reading, formatted as follows:
SSSS = the signature, or
NNXX = the minimum (NN) and maximum (XX) counts, or
0L00 = the logic level history bits as follows:
OLXH = bits set to 1 for Low, invalid (X), High
DD = the device number of the device to be probed
PP = the pin number to be probed on that device

Register 9 = ISSJFFKM, where
I = the device type code for the second suspect bad component
SS = the device number of the second suspect bad component
J = the device type code for the first suspect bad component
FF = the device number of the first suspect bad component
K = the device type code for the device to be probed
M = the sync and reading mode bits DACH, formatted as follows:
D =1 for data sync C =1 for event counts
A =1 for address sync H = 1 for logic history
DA = 0 for free-run CH = 0 for signatures

You may wish to hand-enter parameters which change
only slightly from test point to test point. For example,
you may expect to get the same reading on pin 82 as
you got on pin 27. Since device and pin numbers must

Table 4. Typical GFI Supervisor Program Sequence

I. LABEL 1
2. REGC = 4351

Test first node

Set register C parameter

3. REGS8 = 6B3F0 51B Set register 8 parameter

4. REG9 = 11A57318 Set register 9 parameter

5. EXECUTE PROGRAM 21 Call GFI control: take and compare
reading

6. IF REGB = ID GOTO F End if CLEAR key pressed

7. IF REGB = 26 GOTO 1 Repeat check if RPEAT pressed

Perform 1-7 for each node to be

probed

LABEL F End of program

15. Prompt: REG C=nnnn, 8=nnnnnnnn,
9=nnnnnnnn
Action: Record the values shown on the display
because they are register parameters for you to use
when developing the GFI supervisor or main test
program. Once they are recorded, press CONT to
start over at prompt 2 to gather information and
build parameters for the next test point. Table 3
gives the format for the parameters in registers C,
8, and 9. As an example, if you wanted to probe
U5 pin 27 for signature 6B3F in data sync mode
using setup program 67 and stimulus program 81,
and suspected CR115 or U26 bad in the event of a
bad signature, the register parameters would be:

Reg C = 4351, Reg 8 = 6B3F051B, Reg 9 =
11A57318.

If you have a terminal or printer properly interfaced to
the 9010A via its RS-232 port, then the parameters will
be displayed or printed for you, saving you the trouble
of writing them.

be in hexadecimal form, you will need to convert the
decimal pin numbers to hex before recording them.
Program steps to convert decimal to hex and vice versa
are as follows:

DPY-DECIMAL 1=%1 HEX converts decimal to hex
DPY-HEX /1=@1 DECIMAL converts hex to decimal

Step Six: Enter the Parameters Recorded into
SUPERVISOR Program 20

Now you need to enter the parameters recorded from
step five into registers C, 8, and 9 via program 20 or
your main test program. Table 4 gives a typical
sequence for doing this. You must enter program steps
2 through 5 for each node to be probed, omitting
registers whose values do not change for the next node.
You can enter steps 2-5 in the appropriate spots in the
main test program rather than in a separate GFI
Supervisor.

Consider these important points when creating the
Supervisor program:

1. Although the Controller attempts to enable the
asynchronous key interrupt, it actually only toggles the
interrupt from its current condition. Therefore, your
test program or the Supervisor must have the interrupt
disabled before executing the Controller.

2. The Controller communicates with the Supervisor
by loading the B register with the value of the CLEAR
key if the operator presses CLEAR when the test is
looping or in response to the CONT? prompt when
suspected bad components are displayed. The B
register contains the value of any other key pressed
when the STOPPED light is off and the Controller is
not looping on a failure (see next topic). Therefore, the
Supervisor must use key codes in the B register to
control flow of the GFI activity. An example of this is

FLUKE

shown in Table 4. The Supervisor terminates if the
operator presses CLEAR, and repeats if RPEAT.

3. The Controller loads the last reading taken into
register E before exiting to the Supervisor. Signature or
count will be in the lower bits; History will be in bits
24, 25, and 26, as they would be in register 0 after a
READ PROBE. This can be useful for further program
manipulation of the reading.

Step Seven: Run the SUPERVISOR

Program 20

Now, whenever your main test program fails, it can
execute program 20 to determine the cause of the
failure. Program 20 (or your main test program) will
execute program 21 which instructs the operator to
probe a point, waits until the probe is in place, takes
the reading, compares it to a known-good one, loops on
a failure if desired, and displays the suspect
components if not. This is described in detail in the
next topic.

How Do I Operate The SUPERVISOR?

Once called by your main test program or program 20,
the GFI Controller (21) displays only the five types of
prompts for operator actions given in the following
paragraphs. For more detail on the flow of the GFI
programs while the test is running, refer to Figure 3.

1. Prompt: PROBE U5 PIN 12
Action: The operator must touch the probe to the
circuit at U5 pin 12 and hold it there. The
program senses that the probe is in place after
about one second, then sets up and stimulates the
UUT circuit, takes the reading, and compares the
actual result to the expected result. If the reading
is good, then the program displays prompt 5. If
not, it displays prompt 2.

If nothing happens after a few seconds, then the
operator should assume that the circuit is dead and
press CONT. The program will assume a failure
and display the BAD message in prompt 2. If the
operator presses any other key during the one-
second period, then the program will advance to
prompt 1 for the next test point without taking a
reading for the U5 pin 12.

If the program expects a reading of Invalid logic
level history only, then it will append *‘, CONT”
to the prompt 1 display and not try to sense the
presence of the probe in the circuit. In this case,
the operator must press CONT to cause the
program to start taking the reading.

10

2. Prompt: U5-12 CNT 10-20 = 5, BAD, LOOP?
Action: The operator should press YES to loop on
the failing test, or NO to display the suspected bad
components. The display shows a test failure .
because a count of 10 through 20 was expected, but
only 5 was received.

3. Prompt: U5-12 CNT 1 0-20 =5, BAD, CONT
(display failure in loop)
or U5-12 CNT 10-20 = 15, GOOD, CONT
(display pass in loop)
Comment: The program will display one of these
types of messages while looping on a failure (you
pressed YES in response to prompt 2)

Action: The operator should press CONT to stop
the loop, CLEAR to abort the test program
altogether, or any other key to advance to prompt 1
for the next test point. If the operator presses
CONT, then the program will take a final reading
and go to prompt 2 or 5.

If the GOOD message appears occasionally
amongst BAD ones, the operator can assume the
failure is intermittent. It is possible that there is no
failure, but that the GFI Supervisor passed an
erroneous parameter, or the programmer asked for
event counts when logic history should have
sufficed on a severely unstable mode.

4. Prompt: SUSPECT BAD U5, Q12, CONT?
(display suspect components)
Action: The operator should press YES to advance
the program to prompt 1 for the next test point, or
NO to terminate the test program altogether. The
program advanced to this prompt when the
operator pressed NO in response to prompt 2.

5. Prompt: U5-12 CNT 10-20 = 15, GOOD
Action: No operator action. The program displays
this message to notify the operator that the test
passed from prompt 1 or passed from prompt 3
after the operator pressed CONT. The display will
be visible only momentarily, then the program will
advance to prompt 1 for the next test point.

Conclusion

The guided fault isolation programs in this bulletin
should work well in your application with little or no
modification. Further, a good understanding of their
philosophy, nature, and flow should help you simplify
the task of testing and troubleshooting your
microprocessor-based systems.

FLUKE

Figure 3.. Functional Flow of GFI Programs

20 (ENTER FROM GFI SUPERVISOR; REG 6,89 CONTAIN PARAMETERS)

NOTE: NUMBERS
BESIDE BOXES
ARE PERFORMING
PROGRAM
NUMBERS.

v

21| CLEAR LOOP FLAG h

21 rEXECUTE SETUP PROGRAM |

2 (_DISPLAY: PROBE US PIN 12)

24 (IS EXPECTED READING = X HISTORY ONLY?)

w NO

IS PROBE IN PLACE?

w YES

24/ WAIT FOR OPERATOR TO PRESS CONT]

24

NO [YEs

OTHER KEY PRESSED

YES
21

24 S\ES
NG{_CONT PRESSED? 21I

23] SET SYNC MODE

READ PROBE

g EXECUTE STIMULUS PROGRAM

READ PROBE

23 *

25
22 LDISPLAY READING, eg. “V5-12 SIG EXPECTED = ACTUAL >

v

CONT PRESSED DURING READING N

YES
21

O

21 { LOOP FLAG SET?

21 (OTHER KEY PRESSED?>

CLEAR LOOP FLAG]
IYES [NO

—-2—1{ PUT KEY CODE IN REG B Jl

21 (WAS ACTUAL READING = EXPECTED. OR WITHIN COUNT RANGE?)
W YES w NO
21 <ADD DISPLAY: "GOOD”> 21 <ADD DISPLAY: “BAD”)g————

— N9 oor FL*AG SET?) — Y5 oop FL*AG SET?)
21 : 21 ¥ -

w YES
21 Q\DD DISPLAY: “LOOP@

21 QDD DISPLAY: "CONT")Q——
v

YES
SET LOOP FLAd—m<WAIT FOR OPERATOR TO PRESS YES/NO

21
27 <DISPLAY: “SUSPECT BAD 1st, 2nd COMPONENT, CONT?” >

NO
21 rSET REG B = CLEAR CODE]"—21@/\” FOR OPERATOR TO PRESS YES/NO

>L> — lves

IS PROBE STILL IN PLACE? 3

v NO

DISPLAY: “REMOVE PROBE")

24

EXIT TO GFI SUPERVISOR; REG 6,8,9 UNCHANGED:
REG B = CODE FOR KEY PRESSED BY OPERATOR
WHEN NOT PROMPTED

20

11

FLUKE

Table 5. Guided Fault Isolation Program Listings

PROGRAM 3 KEY ENABLE 12 BYTES Enable key interrupt

Inputs: none
Called by: programss 4, 21, 22, 24

Calls to: none
Output: Reg B = 40; toggles the enabling of asynchronous keyboard interrupt
REGB = 40 Initialize reg B
DPY-+2B Enable key interrupt to reg B
PROGRAM 4 KEY UAIT 18 BYTES Bait for key interrupt
Inputs: none

Called by: program 22
Calls to: Rrogra- 3
Outputs: egister B = the value of a key pressed (0-3F)

. EXA.E%.({T% PROGRAM 3 Enable interrupt
" IF REGB = 40 GOTO 1 Loop till key pressed (40)
PROGRAM 9 DELAY 28 BYTES Delay loop (variable time)
Inputs: Register F = delay loop paraseter
Called by: psgym 21, 22 v pa
Calls to: nomne
Output: delay time to delay prograas execution for displays
REGL = REGF Save dela? garaneter
0: LABEL 0O L reg imes
IF REGL = 0 GOTO 1 Exit if end of loop
DEC REG1
G010 ©
1: LABEL 1 End loop
PROGRAM 20 SUPERVISOR 26 BYTES Main Guided Fault Isolation program
Inputs: Reg B = any k:& pressed during Controller program when not looping
and not stopped.

Called by: any main besg progras upon detecting failure
Calls to: Brograa 21

Dutputs: egisters C, 8 and 9 as given by program 22
DPY-GFI SUPERVISOR PROGRAHM Enter your GFI prograam here
PROGRAM 21 CONTROLLER 609 BYTES Controls the GFI activity
Inputs: Registers C, 8, and 9 as specified by program 20
Called by: program 20 or other test zgrogran
Calls to: rograms 3. 27, 24, 26, 23, ¥, Setup program specified by reg C
Outputs: eg B = value of key pressed by operator during program; reg E =
last reading; reg C.8,9 stay unchanged; other globag; may change
IF REGC AND FFQO = 0 GOTO O Branch: no setup progras number
REG3 = REGC SHR SHR SHR SHR SHR SHR Get setup progras number
SHR SHR AND FF
EXECUTE PROGRAI REG3 Condition UUT with setup program

0: LABEL O
12

FLUKE

REG3 = REGB AND FF
REGA = REGB SHR SHR SHR SHR SHR SHR
SHR SHR

REG2 = REGA AND FF
REGA = REGA SHR SHR SHR SHR SHR SHR
SHR SHR

REGS = 0

REGS = REG? SHR SHR SHR SHR
REG7 = REGC

EXECUTE PROGRAM 3
DPY-HPROBE -

REGA = REGA

EXECUTE PROGRAM 27

DPY—+@2 PIN @3

REGA =

IF 40 > REGB GOTO F

REGB = 40
GOTO 5

1: LABEL 1
DPY~
REGA = REGS
EXECUTE ggﬂ;RM 27
REGA = REGH
EXECUTE PROGRAM 24
REGO = REGA
REGL = REGD
REGC = REG7
EXECUTE PROGRAM 23
REGE = REGA

IF 40) REGB GOTO A

2: LABEL 2
IF REG? AND 2 > O GOTO 3
IF REGA = REGO GOTO 8
3 GOTO 5

LABEL 3
IF REGO) REG1 GOTO 4
IF REGA) REG1 GOTO 5
IF REGO) REGA GOTO 5
GOTO 8

4: LABEL 4
IF REG1)= REGA GOTO 8
IF REGA)= REGO GOTO 8

LABEL 5
IF 40) REGB GOTO A
~+8AD

ppY
IF REGS > 0 GOTO 9
DPY—+it
REGF = 2
EXECUTE PROGRAI1 9
DPY-+it; LOOP?S
IF REGS) 0 GOTO 1
DPY-SUSPECT BAD —
REGC = REG7
6: LABEL &
REG6 = REGH SHR SHR SHR SHR
REG7 = REGS6 AND FF
IF REG7 = O GOTO 7
REG6 = REGS SHR SHR SHR SHR SHR SHR
SHR SHR

Get pin nuaber to probe
Setup to get component number

Get component nusber to probe
Get signature/lo-hi/history

Initialize flag to no loop

Get component types
Save m/st:lm us pg; # parameter
Enable key interrupt for exit
Display message to probe

Set global:coq:onen tl{g parameter
Display component type probe
Display chip & wo to probe

Set global: wait—for-probe flag
Wait till probe is in place

Branch: operator didn’t press REHNT
Exit: operator pressed key not
Pressed CONT:Reset key interrupt
FAIL: no circuit activity at probe
Loop point for checking circuit
Clear disglag

Set qloba :component type paramseter
Display component type being probed
Display chip & pin # being probed
Set ﬁobal: expected result
Display expected result

Get expected sig/history/min count
Restore setup/stisul tr
estore stimulus parame
Set sync mode, stinulatg.g.rd probe
Save reading for use by Supervisor
Branch: operator pressed ke

Loop point for during 20:@
Branch: check for correct coun
Branch: sia/historg is correct
Branch: bad signature/logic history
Check for correct coumt

Branch: min is) max (count wrap)
Branch: actual is) max (bad)
Branch: actual is ¢ ain (bad)
Branch: count within min-sax (good)
Count erap limit check

Branch: actual is ¢ max (good)
Branch: actual is)=ain (good)
Handle bad/no readings

Branch: operator pressed key
Display failure messa

granch: loop if loop ¥lag is set

eep

Set Delay paraseter

Delay to hear second beep

Ask shether to loop on failure
Branch: loop flag is now set
Mo loop: d1splag message
Restore setug/s imslus pge #Hs
Loop to display suspect components
Get S&sgect component ¥

Hask other info

Branch: endloop if no suspect
Get suspect component type

13

FLUKE

IF 40) REGB &OTO C
DpY-+2B
GOTO €
: LABEL 8

DPY—+:00D
IF 40) REGB GOTD A
IF REGS = 0 GOTO A
: LABEL ¢

REGA = 1
EXECUTE PROGRAM 24

Set global: suspect type
Display suspect component type
Display suspect component #
Branch: loop to get next suspect
No more suspects:
sgk -gethggrt to téontlj.nge.gﬂ
ranch: next point if yes
Branch: operator pressed key
Disable key interrupt
Branch to exit (no continue)
Comparison sas good
Display good message
Branch. operator pressed key
Branch: loop flag is clear
Loop flag is set:
Displa message
Set delay parameter
Delay to see message
L to beginning
Enable exit:
Set delay parameter
Delay to see readinius
Restore setup/stimu pom #is
Branch: operator didn’t press key
Branch: pressed
Branch: other key pressed
CONT was pressed
Reset interrupt register
Branch: Loop flag is clear
Clear loop flag
Re-enable key interrupt
Loop to re-display readiggs
Hait-for-probe loop fail

Set clear code into interrupt reg
Branch: exit
No kegepressgd during routine:
glgzb key interrup

xit:
Set global. remove-probe flag
Wait for probe to be resoved

PROGRAM 22 PACKER 1379 BYTES

Inputs: none

Called by: none (standalone)

Calls to. programs 3, 4, 9. 23, 26, 27, Setup and Stimulus Programs
Outputs: registers C, 8, and 9 for use by program 20

Packs parameters for reg C, 8, 9

DPY-PARAMETER PACK PROGRAMH Displavi sessage
REGF = 50 Set delay parameter
EXECUTE PROGRAHM 9 Delay to see display

:

: LABEL O
DPY-DEVICE TO PROBE (1-F.ENTER?

DPY—4 —

EXECUTE PROGRAIN 27
EXECUTE PROGRAM 4

Set global: clear type parameter
fisk for device type

Display device type
Ua?g #gr ops.-!'ai:c:n‘ilJ to press key

REGO = REGA Save device tlioe

REGA = O Set global: clear type paraseter

IF REGB = 1C 6070 1 Branth: ENTER key was pressed

IF REGB = 0 GOTO O Branch: 0 type not allowed

R = REGB Set global: save device type

IF F)= REGB 6OTO O Branch: i-F types allowed

REGA = REGO 1llegal type: restore last good one
DPY—+ Beep for erroneous entry

14

FLUKE

GO0T0 0

LABEL 1

DPY-ENTER DEVICE NUMBER (256 =
DPY-+ \7

IF REG7) FF 6070 1

LABEL 2

DPY-ENTER PIN NUPBER (256 = \é
IF REGS > FF GOTO 2

LABEL 3

DPY-1ST SUSPECT TYPE (O0-F,ENTER
DPY—+) o

EXECUTE PROGRAN 27

EXECUTE PEIéCABRM 84

= 1C GOTO 4

REG3 = 0

IF REGE = 0 GOTO 7

DPY-1ST SUSPECT NUMBER (256 =
DPY-—+ \3

IF REG3 > FF GOTO 4

REG3 = REGE SHL. SHL SHL SHL SHL SHL

SH.SH.CRREG?:
5: LABEL 5

IF REG3 = O GOTO 7

DPY-2ND SUSPECT TYPE (O-F,ENTER
DPY—+)

EXECUTE PROGRAIt 27

EXECUTE PROGRAM 4

REGF = REGA
REGA = 0

IF REGB = 1C GOTO 6
REGA = REGB

IF F)= REGB GOTO 5
REGA = REGF
DPY-+§

G070 5

LABEL 6

REGZ = 0

IF REGF = 0 GOTD 7

DPY-2ND SUSPECT MUMBER (256 =
DPY-+ \2

IF REG2) FF GOTO 6

REG2 = REGF SHL SHL SHL SHL SHL. SHL

SHL SHL. OR REG2

7:

LABEL 7
DPY-PRESS 0=SIG, 1=LEVEL,
DPY—+ 2=COUNT

EXECUTE PROGRAM 4

REGS = REGB

IF REGS > 2 GOTO 7

LABEL 8
DPY-PRESS O=FREE 1=ADRS 2=DATA
SYNC
EGB
IF REGA > 2 GOTO 8

IF REGA) 0 GOTO 9
IF REGS > O GOTO 9

Branch: loop till ENTER pressed

fAisk for device number
Save in reg 7

Branch: not allowed
Ask for pin numberl; save in reg é
Branch: not al

Ask for 1st suspect

Display suspect typ

Wai tgll key pressed

Save suspect type in reg £

Set global: clear type parameter
Branch: ENTER pressed

Set global: save device type
Branch: 1-F types allowed

Illegal type: restore last good one
Beep for erronecus entry

Branch: loop till ENTER pressed

Clear 1st suspect #

Branch: 1ist suspect type = 0

Ask for suspect #

Save in reg 3

Branch: F not allowed

Herge suspect type with # in reg 3

Branch: no 1st ect
d suspect type

Display 2nd suspect type

Hait for operator to press key
Save suspect type in reg F

Set global: clear type paraseter
Branch: ENTER pressed

Set global. save device type
Branch: 1i-F types allowed

Illegal type: restore last good one
Beep for erroneous entry

Branch: loop till ENTER pressed

S‘“"h"“" g suspect

ranc no ec

Ask for susg we

Save in r

Branch: not allowed

Herge suspect type with # in reg 2

Ask for sig/level/count mode

Wait for operator to press key
Save key in reg 5
Branch:)2 not allowed

ask for sync mode

Hait for operator to press key
Save key in reg 4

Branch:)2 not allowed

Branch: A or D sync selected
Branch: not sig and free-run

15

FLUKE

DPY-H#NO FREE-RUN SIGNATURES
REGF = 40

EXECUTE PROGRAM 9

coTa 7

9: LABEL 9

REGL = O

REGA = 0

DPY-SETUP PGIt= \A; STIMULUS PGH

DPY—+ =\1

IF REG1) 63 6070 2

IF REGA) 43 GOTO 9

REG1 = REGA SHL. SHL SHL SHL SHL SHL
SHL. SHL. OR REG1

REGB = REG7 SHL SHL SHL SHL SHL SHL
SH. SHL OR REGS

REG? = REG2 SHL SHL SHL SHL SHL SHL
SHL SHL SHL SHL SHL SHL OR REG3

REG? = REG? SHL SHL SHL SHL OR REGO

REG? = REG? SHL SHL OR REGA

IF REGA = 0 GOTO A
%WTE PROGRAN REGA

EL A
IF REGB = 1D GOTO 7
IF 40 > REGB GOTO C
1, 4 (e

REGA = REGO
EXECUTE PROGRAM 27
DPY-+07-84
REGA =

PROGRAM 26
REGC = REG1
EXECUTE PROGRAM 23
DpY—+
REGF

= 50
EXECUTE PROGRANM 9

IF 2) REGY AND 3 GOTO A
IF REGS > REGA GOTO B

REG5=REGA
B: LABEL B
IF REGA > REG4 GOTO A
REG4 = REGA
GOTO A
C. LABEL
IF REG? AND 3 = 2 GOTO E
REGD = REGA
REGZ = 0
REG6 = REGD AMD FFFF
IF REG? AND 3 = 0 GOTO D
= REGD SHR SHR

LABEL D

DPY-ENTER SIGNATURE $6 = /6
IF REGS > FFFF GOTO D

6010 F

Display error message
Set delay parameter
Dela to see disp lgg
Loop For re-entry sode & sync

Clear se rograa nusber
Clear stmlgs gr‘ogran nusber

Ask for 1nulus poa #s (dec)
Save in re A an
8ranch: decmal not allowed

Branch:)99 decimal not allowed
Merge pgm Hs together in reg 1

Merge probe chip & pin # to reg 8
Herge ist & 2nd suspects to reg ¢

Merge probe device type to reg 9
l‘lerge sync _type to reg 9
ge 519/ level/count type to reg 9

Enable key interrupt

Set ain count to max

get ugx count htg min

ranch: no se rogram
Execute setug prozragr

Loop to nown good result
Branch: restart if CLEAR pressed
Branch: loop if no key pressed

Clear d15§ 3
g ev1ce type to probe
Dzsp ay type to probe
splay device nuaber and pin
global no expected result
D1sp ay sig/level/count type
Set global: setup/stnulus pgn
Stmulate. take, display rea ing
Prompt to press CONT when done
Set delay parameter
Delay to see reading
Branch not event count
Branch: old max) new count
Save new max count
0ld max > nes count
Branch: new count) min count
Save new ain count
Branch: do next reading
Routine to enter knoun-good result
8ranch: event count msode
Set global: save reading
Clear min count
Get signature
Branch: signature mode
Get logic level history

Ask for history bit pattern
Save in reg 4

Branch:)7 not allowed

Move history for later merging

Roubme to enter known good history

%d 5igQ; save in reg 6
gragch FF ng*‘t allowed 9
xi

16

FLUKE

m
2
F
m

IF REGZ7) 7F 6070 E

REGS6 = REGS SHL SHL SHL SHL SHL SHL
SHL. SHL
F: LABEL F
REGB = REGS SHL SHL SHL SHL SHL SHL
{S;I.SH.S!-!.SH.SH.S’-I.SH.S&LSI'LSH.
REGB = REGZ SHL SHL SHL SHL SHL SHL
SHL SHL SHL SHL SHL

REGB
REGC = REG1
DPY-REG C=$C; 8=$8; 9=%9

EXECUTE PROGRAM 4

PROGRAIM 23

Inputs:
Called by: programs 21 and 22

READER 223 BYTES

Routine to enter ain and max count
Get ain count read

Get max count read

Ask for ain count; save in reg 6
Ask for max count; save in reg 7
Branch:)7F ain not allowed
Branch:)7F max not allowed

Hove counts for later serging

Display parameters and loop
Herge sig, hist, max cnt into reg 8

Herge knoen—~good ain count to reg 8

ggt hsehm/st%;ulu:o prograam 20“5
i arameters for program
Segg 2rgneters to RS—252 ?r/F

Uait for operator to press a keu
Set global: initialize device type
Reset sync sode to free-run

Loop to begimming of progras

Stimulate circuit and take readings

Registers C, 8: and 9 as setup by program 20 or 22

Calls to: rograms 9, 25, and Stisulus program specified by register C

Outputs: egister A = actual result

REG1 = REGD
IF REG? AND C = C GOTO D
IF REG? AND 3 = 3 GOTO D
REG2 = REGC AND FF

0: LABEL O
SYNC DATA
IF REG? AND 8) 0 GOTO 1
SYNC ADDRESS
IF REG? AND 4) 0 GOTO 1
IF REG? AND 3 = 0 GOTO 1
SYNC FREE-RUN

1: LABEL 1
READ PROBE
READ PROBE
IF REGZ = 0 GOTO 2
EXECUTE PROGRAM REG2

READ PROBE

2. LABEL 2
IF REGZ AND 2) 0 GOTO 3
IF REG? AND 1 > ¢ GOTO 4

Save any D register value
Branch: invalid sync paraseter
Branch: invalid mode parameter
Bet stimulus program number

Initialize with Data sync mode
B8ranch: Data sync flag is set
Enable Address sync sode

Branch: Address sync flag is set
Branch: force adrs sgnc if sig mode
Mo other sync: select free-run sync

Initialize signature/count/history
Take quick reading

Branch: no stimulus progras #
Stisulate circuit under test

Take signature,count, or history

Branch: event counts selected
Branch: logic history selected
Mask out history and count

Digglag signature taken
Exi
Event coumts:
Hask out signature and history
gigglag counts in decimal
xi

Logic level history
Hask out signature and comt

Di;glag history

Exi

Stop for invalid reg 9 parameters
17

FLUKE

DPY—+HBAD REGY=$%9

E: LABEL E

F: LABEL F
REGD = REG1

PROGRAM 24 MONITOR 236 BYTES

Display error message

s the progras

Em on cgntg:ue

Exit .

2dqtco-a and space to display
xi

Restore value to reg D

Ensure probe in or aut of circuit

Inputs: Reg A = 0 to insert probe, 1 to remove probe; reg 8 and 9 as

ecified by program 20.
Called by: ;gogra- 21 y progr
Calls to: Brogran 3

Outputs:

SYNC FREE-RUN
IF REGA > O GOTO O
IF REG? AND 1 = O GOTO O

IF REGB AND 7000000 = 2000000 GOTO 4

0: LABEL ©
REGL = 10
: LABEL 1
READ PROBE
IF REGA = 0 GOTO 2

IF REGO AND 5000000 = 0 GOTO 3
DPY-REMOVE PROBE
6070 0

2: LABEL 2

IF 40) REGB GOTO D

IF REGO AND 5000000 = 0 GOTO 0
3: LABEL 3

DEC REG1

IF 40) REGB GOTO F

IF REGE) 0 GOTO 1

GOYO F

4: LABEL 4
DPY-+, CONTINUE

5: LABEL 5
IF REGB = 40 GOTO 5
IF REGB = 25 GOTO 6
GOTO F

&6: LABEL 6
EXECUTE PROGRAN 3
GOTO F

D: LABEL D
IF REGB = 25 GOTO E
G010 F

E: LABEL E
EXECUTE PROGRAM 3
REGB = 41
ppy-+

F: LABEL F

PROGRAN 25 D-HISTORY 103 BYTES

eg B = 40 if no key pressed; 41 if CONT during loop; key value

Set free—run to enable async probe
Branch: remsove probe

Branch: no CONT if not histor
Branch: not seeking invalid state
Loqg_point for repeating check
Initialize pass counter

Take Rrobe reading

Branch: insert probe

Branch: high/loe received
Display messa

Loog till probe is removed 10 tries
Wait till probe is inserted
Branch: operator pressed key
Branch: high/low not received
High/low received:

Decrement pass counter

Branch: operator pressed key
Branch: 1 till 10 good passes
Exit after 10 passes

Ef_it‘l‘Y if needed to press CONT
Display message

Hait till operator presses key
grggch: operator pressed CONT
xi

gegléable key interrupt
xi
Key pressed during check routine
Branch: key was
Exit: key was not CONT
CONT keg was pressed
Re-enable kemterrmt
Set global: LCOM g;es
édqtspace to display
xi

Display logic history

Inputs: Register A = history YO00000, where Y bits are LXH, or FFFFF (frow)

program 22 for no history.

Called by: rograes 23 and 26
Calls 1:0':=| go“gr

Outputs: display only

18

FLUKE

IF REGA AND 7000000) 0 GOTO O Branch: sose history indicated
DPY—+NONE Display message of no history
G0TO 3 Branch: exit
0: LABEL 0 Display tt{e of history
IF REGA AND 1000000 = O GOTO 1 Branch: not HIGH
DPY-+H display H
1: LABEL 1
IF REGA AND 2000000 = O GOTO 2 Branch: not INVALID STATE
DPY—+X Display X
2: LABEL 2
IF REGA AND 4000000 = 0 GOTO 3 Branch: not LOU
DPY—-+. Display L
3: LABEL 3
PROGRAM 26 D-EXPECTED 149 BYTES Display mode and expected result
Inputs: Reg A = expected result froa EEOQN. 21, FFFFF from program 22;
Reg 9 = se by program 20,

Called by: programs 21, 22
Calls to: rogras 25
: eg A = expected sig, history, min count; reg D = exp max count

IF REG? AND 1 = 1 GOTO 2 Branch: logic history selected
IF REG? AND 2 = 2 GOTO 3 Branch: event count selected
1: LABEL 1 Signature selected
DPY-+516 Display reading type
IF REGA » FFFF GOTO 5 Branch: no expected result
DPY—+ $4 Dis_-glag expec signature
60710 5 Exi
2: LABEL 2 Logic history selected
DPY-HEVEL Display reading type
IF REGA) FFFF GOTO 5 Branch: no expected result
REGA = REGB AND 7000000 Hask out all but history
EXECUTE PROGRAM 25 Digglag history
60710 5 Exi
3: LABEL 3 Event count selected
IF REGA) FFFF GOTO 4 8ranch: no expected result
REGD = REGA AND 7F Mask out all but maximum count
REGA = REGA SHR SHR SHR SHR SHR SHR Mask out all but minimum count
SHR SHR AND 7F
DPY-+(NT s @ 4 —& D Display minisum and maxisua coumt
4: LABEL 4 Display for program 22
DPY—COUNT D1sglag reading type
5: LABEL 5 Exi
DPY—+ =_ Add equal sign to display
PROGRANM 27 D-DEVICE 284 BYTES Displays device type
Inputs: Reg A = value 0 through F to display a device (O=none)
Called by: programs 21 and 22
Calls to: nomne
Outputs: display only
REGL1 = REGA AND F Mask out all but the lower nibble
IF REGLI = 0 GOTO F Branch: to selected display code
IF REGLI = 1 GOTD 1
IF REG1 = 2 GOTO 2 Hote: aodify display steps to
IF REGL = 3 GOTO 3 tailor this progras to your needs
IF REG1 = 4 GOTD 4

19

moaw>ONV

LI I O O I 1]

F: LABEL F

Segnga0css

Disglag item F (Available for use)
Exi

Display itea 1: Integrated circuit

Transistor
Resistor
Capacitor
Diode

Seitch

Light eaitting diode

Pushbutton or key
Relay

Plug

Jack

IC socket

Backplane

Available for your use

FLUKE

®

All data, documentation, diaiog, diagrams, suggestions, reports and/or
other forms of media contained in this bulletin are intended to be
informational in nature only. Implementation of such data to a user's
application should ONLY be made after careful analysis by the user's
own software experts. John Fluke Mfg. Co., Inc., specifically disclaims
all warranties on such information, express or implied, including but
not limited to any warranty of merchantability, fitness, or adequacy for
any particular purpose or use.

John Fluke Mfg, Co., Inc.

P.O. Box C9090, Everett, WA 98206
800-426-0361 (toll free) in most of U.S.A.
206-356-5400 from AK, HI, WA
206-356-5500 from other countries

Fluke (Holland) B.V.

P.O. Box 5053, 5004 EB, Tilburg, The Netherlands

Tel. (013) 673973, TELEX 52237

Phone or write for the name of your local Fluke representative.

Printed in U.S.A. B0138A-01U8108/SE EN

