0100 Series

Programmer’s
Manual

gggggg
APRIL 191 FLUKE.

........................

CUSTOMER NOTICE

THROUGHOUT THIS MANUAL, ALL INSTANCES OF 9100A
AND 9105A ALSO APPLY TO THE 91 OOFT AND 9105FT.

Contents

Section Title Page
WHEre Am 17, e Xii

L. OVBIVIBW.. ceeriieittii e e ettt e e e et e e e et e e e e e e eeenenees 1-1

2. B0 2-1
2.1. INTRODUCTION ..ot 2-|
2.2. USERDISK ORGANIZATION.. .ot 2-2
2.3 PHYSICAL ENVIRONMENT 2-7
2.3.1. Monitor Display.. ., 2-9
2.3.2. ASCIl Keyboard.. ..o 2-15
2.3.3. Editor Keypad.. ..o 2-17
2.3.4. Softkeys (Function Keys). ... 2-19
2.4. ENTERING AND EXITING THE EDITORcccccooviniun 2-20
2.5. DISK UTILITIES.. oo 2-21
2.6. INFORMATION ENTRY 2-23
2.6.1. TeXt ENMY.. oottt 2-23
2.6.2. FIEIAS oo 2-24
2.6.3. Prompts and Defaultscccooeneee. 2-27
2.7. CHECKING FOR ERRORS 2-29
2.8. FILE AND DIRECTORY NAMES.. ...cccooimmmmiririneirenns 2-31
2.9. EDITING A USERDISK 2-32
2.18. CURSOR COMMANDS 2-35
2.11. WINDOW COMMANDS 2-38
2.12. BLOCK COMMANDS.. ...ccovininiiiniisssiiis 2-39

Section Title Page

2.13. GUIDED FAULT ISOLATION COMMANDS.................... 2-41
2.14. TERMINAL EMULATION COMMANDSo 2-43
2.15. CAD TRANSLATOR COMMANDS ..o, 2-43
3. 0verview of TLA oo 3-1
3.1. GETTING STARTED WITH TL/1 PROGRAMS............... 3
3.1.1 Features of TL/M ... 3-l
3.1.2: Locations of TL/1 Progams...........ooovviiivvvnniiinnnnnn, 3-2
3.1.3. Bringing Up a Program SCreencovvvvveeeennnns, 3-2
3.1.4. Structure of @ TLA Progiam..........cooovviiiiiiiinin, 3-7
3.1.5. Writing @ TL/A Progiam........oooo vvveveesrinens 379
3.1.6. Using the CHECK FICion...............cooveeiiinnnininnn, 3-11
3.1.7. Using the Shift-CHECK Function.......................oo0, 3-15
3.1.8. Using the DEDUOET.vvvvveeiiiecciiee e 3-16
3.1.9. Compiling a TLA Program.........oooooii, 3-19
3.1.10. Executing a TLA Progam..........coooveiiiiininiini 3-36
3.1.11. TLAT S 3-37
3.2. DATA TYPES, VARIABLES, AND EXPRESSIONS 3-38
3.2.1. DAtA TYPBS...ieevieeieeeeie e 3-38
3.2.2. VARDIBS ... 3-39
3.2.3. QPRIBIOIS vt 3-51
3.2.4. BUDIESSIONS... . 3-52
3.2.5. Math FURCIONS ... 3-53
3.2.6. System FUCoS............ooooiiii 3-53
3.3. PROGRAM STRUCTURE AND FLOW CONTROL......... 3-54
3.3.1. Block Structure of TL/M. ..o 3-54
3.3.2. How Programs and Functions Are Invoked 3-59
3.3.3. Scope Rules for Programs and Functions 3-60
3.3.4. Passing AIQUMENSooovvivvrriiireiiiiiiieeeeiee i 3-61
3.3.5. Returning Values from Programs and Functions....... 3-62
3.3.6. Scope RulesforVarables.oooviiii 3-63
3.3.7. Conditional ~ Flow of Confrol..............oooooniiiiiiin, 3-64
3.4. INPUT, OUTPUT, AND FILE COMMANDS 3-67
3.4.1. File and Device TYPBSvvviiiiiiiiiiiiiiii 3-68
3.4.2. Opening Devices and Fles.................cccoeeiiiiiinnnnn, 3-68
3.4.3. Buffered and Unbuffered Chamels..................... 3-69
3.4.4, O COMMANGS ... 3-71
3.4.5, WINGOWS ... 3-72
3.4.6. Disk Pathnames in TL/1 .ooooooovviiiiie, 3-75
3.5. POD-RELATED COMMANDS...........cooiviviiiiiiiiiiiin 3-76
3.5.1. Pod Setup COMMANdS............oooviviiiiiiiiiiiii 3-78
3.5.2. Reading and Writing UUT Memory and /0. 3-81

:m\ Section Title Page

3.5.3. Reading and Writing Microprocessor
Interface Signals.. ... 3-83
3.5.4, Stimulus Commands for Signature Analysis.. 3-84
3.5.5. Built-in - Functional TestS.. e 3-86
3.5.6. RUN UUT MOGE.. coorreeireieineeierinesieseseseeeens 3-91
3.6. /O MODULE AND PROBE COMMANDS..cccommnenn 3-93
3.6.1. Naming UUT Components and Pins..cccoeevvnennn. 3-93
3.6.2. Naming 91 00A/9105A DevVices.. ..corerrvvviiiins 3-97
3.6.3. Kinds of Measurements that Can Be Made.. ... 3-98
3.6.4. Synchronization ~ ModesS.. «eeineneineineininins 3-100
3.6.5. Making Measurements with the Probe and
O MOdUIE.. oovvveoevsseeesss i 3- 03
3.6.6. Data Comparison with the /O Module.. ... 311
3.6.7. Pattern Driving with the YO Module..cccooovvvrrunrenn. 312
3.6.8. Probe StmUlUS ..o 3 14
3.6.9. Changing the Calibration Delay Offset for the
/O Module or Probe ..o 3115
3.7. FAULT CONDITIONS AND FAULT HANDLING.. ... 31 16
3.7.1. Raising a Fault Condition.. e 31 17
3.7.2. Fault Condition NAmMeS.. ..o, 3119
. 3.7.3. Creating a Fault Condition Handler.. ... 319
<,) 3.7.4. How a Fault Condition Handler Is Chosen.. 321
3.7.5. How a TL/1 Fault Condition Handler Is Invoked.. ... 3-123
3.7.6. Unhandled Fault Conditions.. ... 3 24
3.7.7. Creating a Fault Condition EXerciser.. ... 3 26
3.7.8. Termination Status (Passes or Fails).ccvnernnn. 3 27
3.8 HELP LIBRARY ...ooniieieneierieeeeseeisesseessssesnnes 3-130
3.8.1. INDEX File.. cooeiviesercernee s 3-130
3.8.2. HELP MESSAQJES ..o 3-130
3.0. GFl COMMANDS.. . ernernereimssemssesnsessseseenieens 3-133
3.9.1. Stimulus Programs Called from GFlccccocovvrvvvverrns 3-136
3.9.2. Stimulus Programs Called From Either GFI
or the Operator's Keypad.. ... 3 38
3.9.3. Invoking GFI from a TL/{ Programccecvmeernennens 3-140
A DBIUGEI. .. v 4-1
4.1 ENTERING AND EXITING THE DEBUGGER..cccoo..... 4-2
4.2 DEBUGGER SCREEN .nereirseerseeiseniessesnenes 4-2
4.3 PROGRAM EXECUTIONcoovirrereerreersneeeeeesneeennees 4-3
44 DEBUGGER KEYBOARD.. ..ccccoovirnreenreerneeerseeeeeens 4-4
4.5 DEBUGGER COMMANDS (SOFTKEYS) ..ccoovonrerrnreenne 4-5
4.6 USING THE DEBUGGER ..o 4-10

O

Section

Vi

NN
fo RNzt
O rhWNRF

Title

Availability of Debugger Commands.. ..oovvininnnnnn.
When an Eror OCCUIS.. .inieneeensseeeeseeneeens
Debugging Programs ...,
Debugging Blocks Within Programs.. ...
Debugging Chained Programs.. ...

Guided Fault isolation (OF)........ccccoovriiiiii,

O WN -

N

NN A S

N

OO CIJICTaTOIO (1 U1TOTC1TGTO1T 01 GTOT G 01 G011 01 G 10T 01
Voot EAERWWWWWWNE
WN -

o
o}

INTRODUCTION ooieerereineeineeieeesseeesssessssesseesseeens

THE BASIC GFlI ALGORITHM.. .o

ADDITIONAL GFI FEATURES.. .o,
The /O MOAUIES.. e
Probing Inputs before Outputs.. ...,
Related INPULS.. .o
Leapfrogging.. .,
Feedback LOOPS.. e

GFI DATABASE OVERVIEW oo
The Database and Stimulus Programs.. ...
How GFI Uses the Database and Stimuli

GFl DATABASE REFERENCE.. v,
Part LIDrary.. .o
Part DeSCHPLONS ...cvvrcereererneereisrissereseseseeseesesenes
Entering a Part Description.. oo,
Reference Designator List.. ...,
Editing the Reference Designator List ...,
NOOE LiSL. woerreererrrerrerreernernernerneesesssememeessenssesseenes
Editing the Node LiSt ...ccoeovvrrrvrnrerrireneererseeneenn,
SUMUIUS Programs ...
Writing Stimulus Programsccccoeeenenneernennens
Stimulus Program Response Files..cccocvvrvriennn.
Editing a Stimulus Program Response File..
Example LEARN SESSIONcocvvvvrreemrennereernsenneens
Compiling the GFI Database for @ UUT.. ...ccoorvrnen.
Generating a Summary of the GFI Database

UNGUIDED FAULT ISOLATION (UFI). ceeverineiiieiiniiins
Differences between UFI and GFl ...
The UFI User Interface ...
Converting from UFIl 10 GFl .o

USING THE GFI DATABASE WITH TL/16

FUNCTIONS.. oot

THE GFl USER INTERFACE ..o

RS N)

5-1

5-3
5-7
5-7
5-8
5-1
5-1
5-1

5-16
5-18
5-21
5-22

O

Section Title
6. Terminal EMUIator ..o
6.1. ENTERING AND EXITING THE TERMINAL
EMULATOR ..ot
6.2. TERMINAL EMULATOR DISPLAYo,
6.3. TERMINAL EMULATOR OUTPUT.. ..o,
6.4. TERMINAL EMULATOR INPUT.. ...ccooiiniericricneicnns
6.5. FLOW CONTROL.. c.coovvrririrrniceneeeneeenereesesseseesennens
6.6. TERMINAL COMMANDS (SOFTKEY DEFINITIONS)......
6.7. TRANSFERRING FILES TO AND FROM
THE 9100A.. .o
6.7.1. Converting Files for Uploading from the 9100A.. ...
6.7.2. General Upload Procedure.. ...
6.7.3. Uploading from the 9100A to a PC.. ...ccoveveevncnae
6.7.4. Downloading Files to the 91 00A.ccccevevivecvnan,
6.7.5. General Download Procedure..ccocovieneenenee.
6.7.6. Downloading Files from a PC to the 9100A.. ...
6.7.7. Converting Files Downloaded to the 9100A.............
6.8 USING THE 91 OOA BULLETIN BOARDccccovrvrinnnns
6.8.1 Logging into the Bulletin Board from the
9100A Terminal EmuIator..ccocovenerrnerninennenens
6.8.2. Downloading Files from the Bulletin Board
to the 9LO00A.. ..o
6.8.3. Uploading Files to the Bulletin Board
from the 9100A.. ...
7 CAD Translator.. rrsseesesssssessssssssesens
7.1. INTRODUCTION oveeieireeerereerersesessesessssessssesssssssseens
7.2. OVERVIEW OF THE CAD TRANSLATORcccoenenee.
7.3. TRANSFERRING A CAD OUTPUT FILE
TO A 9L00A.. e
7.4. USING THE CAD TRANSLATOR.. ..o,
7.4.1. Required INPULS ..o,
7.4.2. Optional Files.. ...,
7.5. ALIAS FILE FORMAT EXAMPLES
7.8. REGULAR EXPRESSIONS.. ..o,
7.7. SUGGESTIONS FOR USING
THE CAD TRANSLATOR ..o
7.8. SUPPORTED CAD SYSTEMS
7.8.1 Futurenet.. ...
7.8.2 SCICArAS ..o
7.8.3 CaNELiX.. coceereereereiee s

Page

7-10
7-14

7-19
7-20
7-21

7-22
7-22

Vil

Section Title Page

8. GlOSSAIY....; ceeeeeeieieeti et sttt e 8-1

Index

Vil

Figures

Figure Title Page
2-1: Userdisk Organization ..., 2-3

2-2: Programmer's — Keyboard ..., 2-8

2-3: Windows in the Userdisk SCreen ... 2-1 0
2-4: A Userdisk Screen with Help WINAOW ...coooovieiiiciniiinniiinninnee, 2-1 2
2-5: Status Line, and Softkey Numbers and Labels Lines.. 2-14
2-6: ASCI Keyboard.. ..o 2-16
2-7: Editor Keypad ... 2-18
2-8: FIEIAS oottt 2-26
2-9: Prompts and REPIES ..o, 2-28
2-1 00 CHECK EITOIS oo 2-30
2-1 11 USErdisk SCIrEEN ettt ssssssesieseniens 2-34
2-12: Deleting, Moving, and Copying Text. i 2-40
3-1 : Locations Of TL/I Programs «eeeresmeressssesessssssessans 3-3

3-2: Program SCrEEN.. v 3-6

3-3: Block Structure of TL/1 Programs.. ... 3-8

3-4: A Practice TL/A Programccooooeceeeeeveeennsssneeesessseessnnnns 3-10
3-5: TL/1 Check Dialog WINAOW oooocvveciiieiiieiecineiesicsiinae, 3-1 4
3-6: Lower Half of TL/1 Check Dialog WIiNdOW ..cccomvmirnmrinniennne, 3-14
3-7: Results of the Practice Program (test101) o, 3-17
3-8: Debugger Screen EXample s 3-18
3-9: TL/I Compiler Dialog WINAOW: ... v, 3-23
3-10: Lower Half of TL/1 Compiler Dialog Window.. «onmneinennns 3-25
31 1: Persistent Variables MOGel « s 3-44
31 20 Persistent Variable Set Program Example ... 3-47
3-13: TL/A BIOCK TYPES eorrveerrreisrseissensessssssssssssssssssssssa 3-56
3-14: Program Structure EXample s 3-58
3-15: Window Coordinate = SYStEMS ..coevrivriimiiiniieiinisessnnssesins 3-74
3l 6 3-77

; - 6: Pod-Related CommMaNndS oo

Figure

6063 62 4 69 096 0962 60 62 60 €0 0y Q0 ¢ ¢
P8 > 8

WWWWRRNNNNNNNON P PP
WP OOONDUEWN 2O ©0 I

S
L.

. .
PO uoihwN R

oo aaaa oo aaanaagaad
AR AR AR : oA

NN P [el Y e
AWNRPOO®O4OUIRXNOPRO

Title Page
Fault Detection for RAM TeSIS.. ..o, 3-89
I/0 Module and Probe Commands, by Category.. .o 3-94
I/O Module and Probe Commands, Alphabetized viinss 3-95
Setup for External Synchronization ..., 3-102
Pattern Driving EXample.. ..o, 3 13
Raising and Handling a Fault Conditionccceviiniiniinnns 3 18
Example of a Program with Handlers ..., 31 20
Locations of Fault Condition Handlers.. ... 3-122
Alternative Actions for Unhandled Faults.. ..oovmninninniinnnnn, 3-125
Termination Status when Handling Fault Conditions..cccc.... 3-128
Termination Status when Exercising Fault Conditions —......c....... 3-129
Editor Display of the HELP Library ... 3-131
A Typical INDEX File.. ooviviiviiervrrenrnsssisenssessssnesesseneens 3-132
Commands Used to Communicate Between TL/1 and GFI ... 3-135
Stimulus Program Called From GFl i, 3-137
Typical Steps for Stimulus Programs.. ..., 3 39
GFl Called from a TL/1 Program ... 3-142
Debugger Screen EXample.. ... 4-3
Example UUT Circuit with Fault ..., 5-4
The Basic GFl Algorithm.. ..., 5-6
Benefits of Probing Inputs before OQUEPULS.......ccevvriirveiirnenen. 5-9
Related Inputs and THeir POMHESrrrrrrveveessnmmnreeerrnenee 5-11
PrOMtY PiNS.. oo ssssssssssssesssssssssssssssssssssnes 5-13
Feedback LOOPS.. . seeessssseesesssssesens 5-15
How GFI Uses the Database and Stimuli ..., 5-20
Standard Part LIDrary ... 5-23
SIP Part DESCIPLION «...corveerrieisreiessseeisssssessessssssesseees 5-256
DIP Part DesCription.. e 5-26
Specifying Pin Functions in a Part Description.. .. 5-29
2114 Part DeSCrPtoN.. vverveereeerrseeseeesrsssessssssseesssssssesenes 5-33
4034 Part DESCHPHON .vevvveeveerrrsssieesessssssessrssssssesssssssissenes 5-36
Pull-Up Resistor Part DesCription.. ...cccoeeeeciieciineiinniiinneinnn, 5-39
7420 Part DESCHPHON ..ooorvvvrrieciiiississiessisessissssians 5-41
Reference Designator List (REFLIST). oo, 5-43
Editing the Reference Designator LISt ..., 5-45
Node List (NODELIST). i 5-47
Bus-Master (*master) EXample.. ..., 5-49
Editing the NOGE LISt ..oevrveeriieirriiierisniesiiesissisenins 5-51
Stimulus Program (ext_SYNC) ..o 5-53
Multiple Signal Sources for One Node ..., 5-57
Stimulus Program (POd-SYNC) eeeeevvveseseneeseesssssssses 5-58
Stimulus Program Response File (addr_out) ..ccocvsevnnnnn 5-61

Figure

T 7 a1 T
WWWWWWWWNN PN NN
NOORWONEL QOO NS

w

-4

oo o
A Do
Poo®

[exNerNerNerNerNerNe))
oo T
~No o bh~wpnN—

~N~ o~
3
wn =

Title

MORE Command Response File.. ...,
Stable and Unstable Response Timing ...

Marginal

Response Timing..
Merging Signatures Example

Example LEARN Session (SCreen 1), v
Example LEARN Session (Screens 2 And 3). ..o,
Example LEARN Session (Screens 4 And 5). ..o

A Signal
The GFI

with Timing Variation..

Offset Window..
Selecting an Offset

GFI Stimulus Program that Sets an Offset. ..o,

Compiled UUT Files

Information Displayed After a Successful and Unsuccessful
COMPIB.. e

Statistical Summary Display for a UUT.. wiininniniinniinnns
Pin Coverage Display for a UUT
GFI User-Interface Example Commandsccoueneneennrnninne,

GFl User-Interface Example Recommendations

Terminal

Keyboard - Control Sequences

Emulator Screen EXample ...,

Keyboard - Escape SeqUENCES.. .
Host to 9100A Connections -
Modem to 91 OOA Connections
Host to 91 OOA Upload Connections - Clear to Send Control
Host to 91 OOA Download Connections

Clear to Send Control

CADTrans

Regular

Process.. ...
Part Alias File Examples

Expression Characters

XON/XOFF Control..oo.......

- XON/XOFF Control..

Page

PAN QA AN A
OO OO0 ONN g~ O
OWUI~NPRNOOTTIWH O

Xi

Gettin
Starte

Automated
Operations
Manual

Technical
User's
Manual

o

U Applications

Manual

Programmer’s
Manual

TL/1
Reference
Manual

Where Am 1?

A description of the parts of the
91 O0A/9105A, what they do, how to
connect them, and how to power up.

How to run pre-programmed
test or troubleshooting
procedures.

How to use the 91 0QA/9105A
keypad to test and troubleshoot your
Unit Under Test (UUT).

How to desi %n test or troubleshooting
procedures for your Unit Under Test
(UUT).

How to use the programming station
with the 91 OOA to create automated test
or troubleshooting procedures.

A description of all TL/1 commands
arranged in alphabetical order for
quick reference.

X

Section 1
Overview

By writing TL/1 programs, you can integrate a wide range of
operations that use and expand on the built-in functions of the
9100A/9105A. The amount of time you invest in creating
programs pays off in increased efficiency for test and trouble-
shooting operations. This manua describes 91 00A/9 105A
programs and how to creste them using the programmer's
interface on a 9100A. For a summary of each TL/I command
and its syntax, refer to the 7TL/] Reference Manual.

If you have written programs before, you will find programming
on the 9100A to be smilar to other programming you have
done. If you have no previous programming experience, you
will find the 9100A system to be easy to learn, dthough you
may want to refer to a programming text for help in
undergtanding some of the fundamentd programming principles
used.

Before you begin to program, you will want to familiarize
yoursdf with the operaion of the 9100A/9105A and with the
proper functioning of the circuit boards you wish to test so that
you can define the tasks you want your programs to perform.

The remaning sections of this manud ae organized in the
following order:

2.

8.

Editor - The physcd programming environment.
You learn how you use the programmer’s interface to
create, modify, and store programs and other
information.

Overview of TL/l - A guide to the features of the
TL/l programming languege. TL/I is a sructured
language specificaly designed for convenient use in
developing test and troubleshooting routines.

Debugger - The 9100A fadlity for fine tuning a
program. Much of programming effort is devoted to
verifying that a program does whét it is supposed to
do. The debugger is an aid to this process.

Guided Fault Isolation (GFI) - How to program the
sysem to perform Guided Fault Isolation. The GFI
troubleshooting feature can be customized for your
UUT designs.

Temind Emulaor - How to use the programmer’s
interface as a remote termind. This feature is useful
for transferring information between the 9100A and
other computer systems.

CAD Translator - How to use the 9100A to
download a CAD system output file and to convert it
into the proper format for use with the
9100A/9105A.

Glossary - Definitions of commonly used terms.

An index is provided a the end of the manud for reference.

Section 2

Editor

INTRODUCTION 2.1.

With the editor, you create, store, or change the data and
programs required for testing and troubleshooting with the
9 100A/9 1056A. The editor follows the userdisk organization
shown in Fgure 2. A “userdik” is the formaited Storage
goace on a physca disk (the hard disk or a floppy disk)
dlocated for user-accessble information. Each physica disk
incorporates a userdisk, which can contain data and programs

for one or more UUTs. To provide additional userdisks, you
add more floppy disks.

2-1

USERDISK ORGANIZATION 2.2.

2-2

A userdisk conddgs of the following:

Userdisk Text Files: Files that can contan any text.
These files are used for information which is not specific
to just one UUT (Unit Under Test).

UUT Directories. Directories tha include dl test
programs and Guided Fault Isolation (GFl) information
for a gngle UUT.

Program Library: Stores programs that can be used by
dl UUTs.

Pod Library: Contains pod descriptions. Each
description includes a database for the pod and sometimes
specid TL/I programs to be used with the pod.

Part Library: Stores descriptions of different types of
components.

Help Library: Contains the text of the operator's
keypad help information.

Figure 2- 1 summarizes the organization of a userdisk. Each of
the items listed above is described in more detail sarting below.

Userdisk Text Files - Operator's ingtructions or program
documentation that is associated with more than one UUT can be
stored in userdisk text documents. Userdisk text files may dso
be written to or read from by a TL/I program.

£-¢

uoneziuebiO ysipiasn : L-g a4nbi4

9100A Hard Digk of
Microfloppy Disk

!

b

|

Help
Library

Help
Message #1

Program Pod Pant
Userdisk uuT Library Library Library
Text File #1 Directory #1
Pod Library Part
Description Description
i Library #1 #
Library ’
Program #1 P?g;grl]eg ,
Pod Pod-Related Compiled
Database Program #1 Pod-Related
Program #1
Reference i
uuT ; Compiled Vector
Program #1 Response Deslﬁggtator ‘ Database File #1

uut
Compiled

aqram #

File #1

Node List

UUT Part
Description
#1

uuT
Text File #1

UUT Directories - Each UUT directory includes the
fdlowing items

. Programs for testing or troubleshooting.
. Stimulus program response files.

* A nodelig (NODELIST).

0 A reference designator list (REFLIST).
. Part descriptions.

® A compiled database (GFIDATA).

* UUT text files

® Ted vector files.

A program is used to test the functiondity of an area of the UUT
(or of the whole UUT.) Programs are dso used in GFl to
dimulate an individud node.

A dimulus program response file contains the correct data
measurements that result from the goplication of a gimulus
program to a paticular node. In a complete UUT directory,
each gimulus program is pared with a response file. GFl uses
one or more simulus programs and response files to determine
whether a node is good or bad.

The node lis describes dl the interconnections of the UUT.
Each UUT directory contains only one node ligt. The node ligt is
used by GFI.

The reference desgnator list contains names which represent
devices on the UUT. With this lig, you asign a unique name
and a part description to every device on the UUT. Each UUT
directory contains only one reference designator list.

A compiled daabase contains simulus program responses,
reference designators, part descriptions, and the node list
converted to a form that the GF program can use for isolaing
faults. You cannot edit a compiled database. Stimulus
programs themselves are not compiled into the database. You
must copy them separately whenever you copy a compiled
database to another disk.

A pat description contains a description of a component, such
as a 7400 quad NAND gate or a resistor. The part descriptions
are used by GFI.

UUT text files may be used ether to describe the UUT or the
teds, or to contain source notes about programming. UUT text
files dso may be written to or read from by a TL/I program.

In addition, UUT text files ae manipulated by the READ
BLOCK and WRITE BLOCK commands entered a the
operator’s keypad. And, UUT text files can be deleted using the
MAIN MENU key on the operator’s keypad.

Test vector files are used to describe the test vectors to be driven

out by a vector output I/0 module. For more informetion, refer
to the Vector Output /0 Module Manual.

Program Library - The program libray usudly contans
programs that perform frequently used operations that are not
UUT specific. Unlike the programs in individual UUT
directories, these programs can be caled (invoked) by any other
program on the userdisk. Storing these programs in the
program library, rather than in a UUT directory, avoids
duplicating the same program for every UUT that uses it.

Pod Library - The pod library contains pod descriptions.
Each of these descriptions contains a database describing the
pod. For some pods, the pod description also contains specia
TL/I programs that are used with the pod.

Part Library - The pat libray conssts soldy of part
descriptions. A “part description” contains a description of a
component, such as a 7400 quad NAND gate or a resstor. The
part library is shared by al the UUT directories on the same
userdisk s0 that a part description does not have to be duplicated
for each UUT that uses that part.

Help Library - The hep library contains the help messages
asociated with fault messages that appear on the operator’'s
display. The hdp messages ae text files There is one file
cdled INDEX in the hdp library which maps fault names with
help text.

Creating or Changing Directories or Files

You create and change directories and files through the editor.
The operations you can peform with the 9100A editor are
context sendtive (they depend on what you are editing). When
the EDIT key on the operator's keypad is first pressed, the
userdisk screen appears on the monitor. If you direct the editor
to a particular UUT directory, library, or userdisk text file, the
editor commands change to match the type of the item sdected: a
directory, library, or text file, for example.

When accessing files, the editor follows the userdisk organ-
ization shown In Fgure 2. For example, if you are currently
editing the node ligt of UUT directory # and want to perform an
operation on a program of UUT directory #2, you can follow
these steps.

1. Quit editing the node lig.
2. Quit editing UUT directory #l.

3. Now you are at the userdisk levd. Type in the name
of UUT directory #2 and sdlect its type.

4. Typein the name of the program and sdect its type.
This type of procedure (and a short-cut method) is described in

the heading “Entering and Exiting the Editor” located in Section
2.

@

PHYSICAL ENVIRONMENT 2.3.

This section describes the physica tools used to edit the contents
of the userdisk. Your 9100A must be equipped with a monitor
and keyboard to enable editing. The connections are described
in Getting Started. The monitor digolays information from the
editor. The keyboard includes an ASCII keyboard, which you
enter text through, and an editor keypad and softkeys (function
keys), which you enter commands with (see Figure 2-2).

2-7

Num Caps Scroll
Lock Lock Lock

I@ I# l$ %

I&

b D I‘*
IWERTYUII IOIPI(
*FPFPFPFET]
i G L

/ Sc Fd

!
I \ Begin Line

Figure 2-2: Programmer's Keyboard

2-8

@

o

Monitor Display 2.3.1.

The monitor's digolay contains 24 lines by 80 columns. When
you firs enter the editor by pressng the EDIT key on the
operator's keypad, this display is divided into areass cdled
windows as shown in Figure 2-3.

The contents of these windows vary according to what you are
editing:

. Information Window: In Figure 2-3 the editor is
operating on a userdisk screen, so the information window
contains information such as the name and description of
the userdisk, the write-protection status of the disk, and
the amount of space available.

. Edit Window: The edit window lists the contents of the
userdisk, organized by categories.

Commands to manipulate windows are described later in this
section under “Window Commands.”

When you are editing a directory (such as a UUT directory or
the part library), the edit window ligts the items in the directory.
For example, when you view a userdisk directory, the edit
window ligs the UUT directories, userdisk text files, the part
library, the pod library, the program library, and the help library
(press the Scroll Forward key to see this item in the userdisk
directory). In this case, you cannot move the cursor into the edit
window nor can you turn the information window off.

When you are editing an item that is not a directory (such as a
program or a node list), you can move the cursor into the edit
window, and you can turn the information window on and off
(by pressing the Info key on the programmer’s keyboard).

29

Information Window

NAME: HDR " DISK FREE: 18,39,

DESCRIPTION:

STARTUP UUT: PROGRAM: DISK PROTECTED: Nd
PRESS A COMMAND KEY OR HELP KEY

DIRECTORY OF /HDR (USERDISK)

I

Units Under Test {UUT}:

Text Files (TEXT):

Part Library (LIBRARY}:
PARTLIB

Pod Library (LIBRARY}:
PODLIB

program Library (LIBRARY}:
PROGLIB

FE=1F3 -E ¥
SAVE FORMAT COPY TERM STYLE

I
REMOVE

Edit Window

Figure 2-3: Windows in the Userdisk Screen

2-10

O

Three other windows can gppear on the display:

o

Help Window: This window, which is controlled by

the Help key on the programmer’s keyboard, contains one
line of text that describes the type of information required
a the cursor location. The window d&so contans a
variable amount of reference information depending on the
type of the item being edited. The window appears in the
lower portion of the display (see Figure 2-4). When you
turn the help window on, the cursor moves into the
window dlowing you to search or scroll through the help
message. To move the cursor to its origind podtion
outdde the window, press the Hep key to turn the
window Off.

Messages Window: This window displays
asynchronous messages that are generated by the 9100A.
The messages window covers the entire display aea
(monitor) and appears as a blank window if there are no
messages to display. You can turn the messages window
on and off by pressng the Msgs key. The Scroll Lock key
stops and garts the addition of new messages.

Fault Window: This window is used to diolay a fault
message that is generated by a TL/I program, either by a

dimulus program or by the debugger. When you turn the
window on, the cursor moves into the Win(%)w dlowing

you to scrall through the complete fault message.

2-11

NAME: HOR

DESCRIPTION:
STARTUP UUT: PROGRAM: DISK PROTECTED: NO

PRESS A COMMAND KEY OR HELP KEY

DIRECTORY OF /HDR (USERBISK)
HEEF G

“Description of user disk {(opt)

GETTING STARTED (use down arrow key to read HELP)

Press the Edit key to create a new UUT directory.

Try This:
Press Help to remove this window then:
Press Edit, type in BOARD and Press Return Twice (selects 'WT* file type)

Figure 2-4: A Userdisk Screen with Help Window

The top line and two bottom lines of the display are reserved for
() the following information as shown in Fgure 2-5:

Status Line: This displays the name (pathname) and
type for the item you ae editing. The datus line ds
disolays the line number of the cursor location. If you
make changes, the gatus line displays a note to remind you
to save the changes before you quit editing.

Softkey Numbers Line: This displays the softkey
numbers (FI, F2, .. ., F10) above the softkey labels.

Softkey LabelsLine: This displays the labds for the
ten softkeys. You press softkeys to perform editor
commands. The softkey labels change according to the
commands that ae avalable When fewer than ten
commands are available, some of the labels remain blank.

Some commands require that you enter information (the
name of a program, for example). Pressing a key for one
of these commands causes a prompt line to replace the
softkey labels, and the cursor moves to the line S0 you can
type in whatever is requested.

The softkey labels line is aso used to display messages
that pertain to the satus of disk operations, such as
“SAVING .. ." and “LOADING . . ." messages.

If you enter ingppropriate information, an error message
replaces the softkey labels on the softkey labels line. Press
the Return key after you read the error message to restore
the softkey labels on the screen.

2-13

’7 Status Line

¢ HOR

DESCRIPTION:
STARTUP WUT: PROGRAM: DISK PROTECTED: ND

PRESS A COMMAND KEY OR HELP KEY

DIRECTORY OF /HDR (USERDISK)

Wi

Units Under Test (UWT):
wc

Text Files (TEXT):

Part Library {LIBRARY):
PARTLIB

Pod Library (LIBRMY):
PODLIB

Program Library (LIBRARY) :
PROGLIB

=5

COPY TERM STVLE

2 4

— Softkey Labels Line

Softkey Numbers Line

Figure 2-5: Status Line, and Softkey Numbers and Labels Lines

ASCII Keyboard 2.3.2.

The ASCIl keyboard (see Figure 2-6) includes keys for dl
ASCIl charecters. In addition, the following keys perform
gpecid functions:

Shift: When pressed a the same time as another key, the
Shift key causes the shifted (upper) vaue of the key to be
typed.

Caps Lock: This key affects only aphabetic keys and
causes these keys to type upper-case letters. Press the

Caps Lock key again to turn off the festure. The indicator
lamp on the key turns on when Caps Lock is active.

Ctrl: When pressed at the same time as another key, the
CTRL key causes the corresponding control sequence
(CTRL-C, for example) to be typed. The CTRL key is not
used during editing.

Scroll Lock: As new messages appear at the bottom of
the messages window, previous messages scroll up and
off the screen. Pressing the Scroll Lock key stops the
scrolling so that messages do not disgppear. Pressing the
Scroll Lock key again unlocks the display and alows
scralling to resume. The indicator lamp on the key turns
on when Scroll Lock is active.

Arrow Keys: These keys move the cursor in the
indicated direction. The Back Space key is identicd to the
left arrow key.

Delete: The Deete key (marked with a large X) removes

one character to the left of the cursor and moves the cursor
one character to the l€ft.

Tab: This key is used when editing programs, node lists,
and text files. When pressed, the Tab key causes spaces to
be inserted up to the next tab stop. Tab stops are located
every eght columns

Field Select: This key is active only when the cursor is
located a a sdectable fidd. The sdectable fiedd will be
highlighted. To scrall through the various sdections, press

2-15

K

Figure 2-6. ASCIl Keyboard

2-16

the Field Select key. To scroll backwards through
() previoudy viewed sdections, hold down the Shift key
while pressng the Fied Sdect key.

. Escape: This key is not used during editing. If you press
this key during editing, you will hear a beep.

. Break: This key is not used during editing. If you press
this key during editing, you will hear a beep.

All keys except the Return key and the Escape key repeat when
held down.

Editor Keypad 2.3.3.

The editor keys shown in Figure 2-7 peform the following
commands.

e Edit: This key lets you edit a new item. For example,

r when you are editing a UUT directory and instead want to

(“} edit a response file, you press the Edit key. The editor
responds by prompting for a file name and a file type.

. Quit: This key lets you quit editing at the current level and
return to the next higher leve. For example if you are
editing a node list and press the Quit key, the editor returns
to the UUT directory. You aso press the Quit key to
cancel a prompt.

NOTE

You may avoid repetitive quitting through
higher levels by holding down the Shift key
while pressing the Quit key. In this case,
control immediately returns to the operator’s
keypad. When you subsequently press the
EDIT key on the operator’s keypad, the
editor resumes with the file or directory from
which the Shift-Quit was issued.

2-17

Sc Fd
0 .

Begin Line EndL

Editor Keypad

Softkeys (Function Keys)

Figure 2-7: Editor Keypad and Softkeys

2-18

G

Softkeys

M sgs: This key turns the messages window on and off.
Help: This key turns the help window on and off.

Info: This key turns the information window on and off.
It is active only when you are editing a file.

Beg F (Begin File): This key moves the cursor to the
firs character or field of the file.

End F (End File): This key moves the cursor to the last
character or fidd of the file.

Sc Fd (Scroll Forward): This key scrolls the display
up 20 lines, moving the bottom line to the top of the edit
window.

Sc Bk (Scroll Backward): This key scralls the display
down 20 lines, moving the top line to the bottom of the
edit window. If fewer than 20 lines exis before the
currently displayed lines, the display is scrolled until the
firg line of the file gopears and the cursor will stay on the
current line.

Begin Line: This key moves the cursor to the first
character or fidd of the current line. It is active only when
the cursor is in the edit window or information window.

End L (End Line): This key moves the cursor to the
last character or fidd of the current line. It is active only

when the cursor is in the edit window or information
window.

(Function Keys) 2.3.4.

Ten keys labded FI, F2, . . . HO (see Figure 2-7) are
designated softkeys because their functions are determined by
the editor software. The labels that appear in the softkey labds
line of the display specify the function for each key that is active.

2-19

ENTERING AND EXITING THE EDITOR 2.4.

2-20

The monitor and programmer’s keyboard provide the
communications interface to the 9100A editor. When you use
the editor, you cannot troubleshoot with the 9100A snce the
operator's keypad and display are inactive for the duration of
your editing session.

To invoke the editor, press the EDIT key on the operator's
keypad. The 9 100A checks for the presence of the
programmer’s interface; if the interface is connected, the
information window and edit window for the HDR userdisk (on
the hard disk) appear on the display. From this point on, you
enter commands from the programmer’s keyboard.

Initidly you are editing the userdisk on the hard disk drive
(cdled the HDR userdisk). Press the Edit key to edit either the
DRI userdisk (floppy disk drive) or any item displayed for the
HDR userdisk. A prompt appears to let you enter the name of
the items and its type (USERDISK, UUT, etc.). If the name
and type match an exiging item, the information is retrieved
from the user-disk and displayed. Otherwise, the editor creates a
new (blank) item with the name and type you have specified.

If you are familiar with the organization of the userdisk, you can
direct the editor to a low-leve item immediately (rather than by
editing successvely lower levels). To do this enter the full
pathname of the item you want to edit. For example, to edit the
program VIDEO-TEST in the UUT directory MAIN-BOARD
on the DRI userdisk, enter /drl/main_board/video_test as the
name of the item to edit.

If you have made changes to the item you are currently editing
and you press the Edit key, the editor will prompt you for the
name and type of the next item to be edited. Then the editor
prompts you to determine whether you want to save the changes
meade to the origind item.

To finish editing, press the Quit key. If you have made
changes, the editor prompts you to determine whether to save
the changes. Once you answer this prompt the editor returns to

e

e

the next higher level. For example, if you quit editing a node

list, the editor returns to the UUT directory. If you quit editin?
the UUT directory, the editor returns to the userdisk. Findly, i

you quit editing the userdisk, the editor returns control to the
operator's keypad.

NOTE

You may avoid repetitive quitting through
higher levels by holding down the Shift key
while pressing the Quit key. In this case,
control immediately returns to the operator’s
keypad. When you subsequently press the
EDIT key on the operator’s keypad, the
editor resumes with the file or directory from
which the Shift-Quit was issued.

DISK UTILITIES 2.5.

Utilities operate on whole entities. programs, node lists, or
UUT directories, for example. These commands are al invoked
by pressing softkeys when the appropriate labels are displayed:

COPY: This command performs several operations. When

you copy a directory, you copy dl the files contained in
that directory.

Copy files and directories « You can copy an item to a new
item of the same type on either the same userdisk or a
different userdisk, with the same name or a new name. If
the name and type of the destination you specify matches

an exi_stinﬁ item, you are prompted about whether to
overwrite the existing item.

Create a backup disk - You can co%){ an entire userdisk to a
different disk. If a userdisk aready exists on the
destination disk, it is erased before copying.

2-21

2-22

Convert files to and from text - If you copy a non-text file
to a new file of the type TEXT, you create a text document
equivdent of the file. If you copy a text document to a
new file of any type except TEXT, the text in the origind
document must meet all the format and syntax
requirements for the new type otherwise, the converson
is not alowed. These operations alow you to trandfer files
to and from a different syssem with a different editor.

Print files and directories « If you print a directory, the
print format of that directory depends on the setting of the
STYLE softkey. If it is st to BRIEF, a lig of the
directory files is printed. If it is st to LONG, aligt of the
directory files file gzes, and file modification dates and
times are printed. You specify a portname (either /PORT1
or /PORT2, whichever the printer is connected to) as the
name and PORT as the type of the item to copy to. The
9100A automaticaly converts the item to text and sends it
to the printer port. This operation can be used to print any
file or directory.

REMOVE: This command removes the item or items you
gpecify. You cannot remove the item tha you are currently
editing.

FORMAT: This command operates on the floppy disk in
disk drive /DRI. The hard disk cannot be formatted.
FORMAT clears the current contents of the disk, prepares
it for goring files, and ingpects it for physcd defects.
You use the FORMAT command either to erase dl files
from a disk or to prepare an unused disk for storing files.
If the specified disk is dready formatted, you are prompted
as to whether you want to overwrite the information.
Otherwise you are prompted to verify that you redly want
to forma the disk. If a phydcd defect is found on the
floppy disk, the FORMAT operation terminates, returning
an error message.

SAVE: This command writes the current state of the item
you are editing, including the name and write protection
datus, to the disk and leaves the cursor a its current
position. For example, if you create a new text document
and type in some text, you enter the SAVE command to
save the text on the disk. If there is not enough free
memory on the dik to save the file, an error message

O

memory on the disk to save the file, an eror message
appears. To save the file, insert another disk and
temporarily save the file on the new disk. Then after
making room on the origind disk, the file can be copied
back onto it.

If the file on the disk is write-protected (indicated by a
YES in the WRITE PROTECT fiedd of the information
window), you are prompted whether you want to
overwrite the disk verson of the file. Because the prompt
is based on the disk verson of the file, if you do not want
to be prompted, change the write-protection fidd of the
information window to NO and save the file. Theresfter
you will not be prompted.

INFORMATION ENTRY 2.6.

You enter dl editor commands by pressng a softkey or an editor
keypad key; you do not need to memorize control key (Ctrl)
sequences or type command names. When the editor requires
more information, it displays a prompt and you type a reply.
When the information that you can enter is limited to a smdl
number of choices, the editor provides the choices for you to
sdect from.

Text Entry 2.6.1.

You insert text a the cursor location by typing characters from
the ASCII keyboard. When you press the Return key, the line
of text is created. If you type beyond the 80 character width of
the digplay, the editor automaticdly inserts a continuaion
character (>) a the end of the display line, moves the cursor to
the beginning of the next disdlay ling and inserts a second
continuation character (<). The continuation characters connect
one digplay line to the next, resulting in one continuous text line
containing more than 80 characters.

The Tab key inserts spaces. Tab stops are fixed a every eighth

column. Pressing the Tab key advances the cursor to the next
tab sop. Tabs are not dlowed when filling in a fidd.

2-23

The Delete key moves the cursor left and erases the character in

that location. Character deletion wraps to the previous line if

you press the Delete key when the cursor is a the beginning of a

ling, the carriage return after the previous line is ddeted, and the

two lines are joined. You cannot delete past the beginning of a
fidd.

You cannot enter control characters in the text. If you type a
control character during editing, you will hear a beep, and the
input will be ignored by the editor.

Fields 2.6.2.

2-24

In programs, text files, and node lists, you can enter characters
anywhere within the display. In response files, part
descriptions, and other items (such as the information window),
cursor movement is limited to specific areas cdled fidds A
sample way to determine the presence of fidds is to move the
cursor with the right arrow and left arrow keys. If there are no
fidds, the cursor moves one character a a time, if there are
fidds, the cursor jJumps from one fidd to the next.

There are two types of fieds, an example of each is shown in
Figure 2-8:

Fill-in: This fidd appears as a long blank, similar to
those on a paper form. You type information into the fied
from the keyboard. When you press the Return key, or
move the cursor out of the fidd, or enter the SAVE
command, the information you have typed is entered.

The number of characters you can type in a fill-in fidd is
limited by the size of the fidd.

Selectable: This fidd can only be filled by a limited
number of choices. When you move the cursor to a
sdectable field, the cursor disgppears and the entire fidd is
highlighted. After you move the cursor to the fidd, press
the Fidld Sdlect key to see the available choices. You can
think of the choices as being attached to a knob that you
turn by pressng the Fidd Sdect key until the choice you
want gppears. To review the sdections in the opposite
direction, hold down the Shift key while you press the
Field Sdect key.

When editing an item in the edit window that contains fidds,
lines are automaticaly inserted when you attempt to move down
from the last line. Lines can adso be inserted above the lagt line
by usng the INSERT softkey. When the INSERT softkey is
pressed, a new line is inserted benegth the line where the cursor
is located. Lines can be deleted by using the DELETE softkey.
When the DELETE softkey is pressed, the line where the cursor
is located will be deleted.

2-25

ma

FUT PINS PIN HAHE PIN NAME RELATED INPUT PINS

ey
o
-
e
el

IEETERE

TLLHL

12,13

Lrr]
-
o

§,1¢

RELATED INPUT(PINS

2-26

— Fill-in Field

|
I7Selectable Field

Figure 2-8: Fields

G

Prompts and Defaults 2.6.3.

A prompt is a word or phrase that appears on the prompt line.

Whenever a prompt appears, the cursor is moved to the prompt
line so that you can type a reply. After you type the reply, press
the Return key. The bottom line of Figure 2-9 shows two
prompts with appropriate replies.

Frequently, a prompt appears with the reply aready provided.
The editor retains the reply that you entered the last time it
displayed this prompt and offers this reply as a default. To enter
the default, press only the Return key. To enter another reply
instead, type it in; the default disappears with the first character
you type. Once you press the Return key, the command is
issued and the new reply becomes the default. To cancd a
prompt, press the Quit key. The softkey labdls resppear and no
operation is performed.

The 9100A editor recognizes the asterisk (*) as a wildcard in
your replies to many of its prompts. The most common use of
the wildcard is while entering names, either to save typing or to
specify severad names at once.

For example, if you want to remove al programs that begin with
the letter R from a UUT directory, you edit the UUT directory
and use the REMOVE command, specifying R* as the name and
PROGRAM as the type. In this case, the wildcard provides a
way to identify many names a once.

You can include severd wildcards in a sngle name. For
example, *TEST* can represent the name BITTESTS. You
cannot include a wildcard in but the lagt item of a pathname;
for example, the pathname /DRI/TK*/EXAMPLE is not valid.

2-27

STARTUP LUT: PROGRAM: DISK PROTECTED: NO.
PRESS A COMMAND KEY OR HELP KEY

DIRECTORY OF /HDR {USERDISK)

Units Under Test (UUT):
wcC

Text Files (TEXT):

Part Library (LIBRRRY):
PARTLIB

Pod Library (LIBRARY): b
PODLIB |

Program Library (LIBRARY):
PROGLIB

NAE AEC \ ST TYPE A

—— Reply Reply

—— Promptt ———— Prompt

Figure 2-9: Prompts and Replies

2-28

CHECKING FOR ERRORS 2.7.

The 9100A editor operates on sructured information. A node
lig, for example, contains only pin names. A program contains
only TL/I datements. Because of this structure, the editor can
detect erors in the information you enter.

The types of errors that the editor detects depend on what you
are editing. For example, when you are editing a node ligt, the
editor checks that everything you enter has the form of a pin
name. For a program, the editor checks that the text you enter
conforms to TL/I language rules.

The editor and debugger check for syntax and run-time errors as
follows

¢ An editor line-check detects syntax errors as you type. If
you try to move the cursor off a line that contains a syntax
eror, you will see an eror message displayed on the
message line. You must change the line to correct the
error; otherwise, you cannot move the cursor off the line,
you can neither save the file nor quit editing.

If you are editing a TL/I program or a node list, you can
turn the line-checker ON or OFF by pressing the CHECK
softkey while holding down the SHIFT key. The current
datus of the line-checker is shown in the daus line. The
line checking mode cannot be changed until the current line
IS correct.

. The CHECK command in the editor performs an overdl
check by searching for syntax erors that cannot be
detected by the line-check, such as missing block
delimiters. When it discovers an error, the editor insarts
an eror message after the erroneous line. If you correct
the error and ressue the CHECK command, the message
disappears. (You can dso deete the message yourself,
usng regular editor commands) The CHECK command
is applicable only for programs and node lists. A display
resulting from a CHECK command is shown in Figure
2-10.

2-29

T~

encountered erroris) during check . {PRESS

Result of missing end if statement following the end loop Statement.

s Result of subtracting a string from a numeric.

Figure 2-1 0: CHECK Errors

2-30

G

S

When the CHECK command is used on TL/I programs,
you are prompted to determine if you want to use the
current set of options to the checker. If you sdect NO, a
didog window liging the various options is displayed.
Use the up and down arrow keys to sdect various items,
and the Field Sdlect key to choose the value of the entry.

NOTE

CHECK messages begin with a series of plus
signs (+) so that you can locate the messages
quickly using the SEARCH command.

® The debugger checks for runtime erors. With the
debugger, you can view and dter the vaues of variables at
intermediate stages of program execution. By tracing the
vaues of variables during execution, you can determine if

a program performs as intended. See Section 4,
“Debugger,” for more information.

FILE AND DIRECTORY NAMES 2.8.

Every file and directory has a name. A file or directory name
must meet the fallowing requirements

. It congss only of letters, digits, underscore characters

"o

_", and periods ".",
. Its first character is either a letter or digit.
. It has no more than 10 characters.

File and directory names are not case-senditive; "TEST1" is the
sane name as “tedl”. Two files or directories can have the
same name if they have different types. For example, a program
named TEST1 is digtinct from a text document named TEST1.
Two files of the same type can have the same name if they are in

different directories. The program DEMO in the program library
does not conflict with the program DEMO in a UUT directory.

2-31

The names PARTLIB, PROGLIB, PODLIB, and HELPLIB can

only be given to a pats library, program library, pod library,
and hep library, respectively. For example, you cannot name a
program PODLIB.

The names of directories that are limited to one per user-disk or
files that are limited to one per UUT directory are predetermined.
These items and their names are:

Items limited to one per userdisk

Directory Name Type

user disk (hard drive) HDR USERDISK
user disk (floppy drive 1) DR1 USERDISK
user disk (floppy drive 2)* DR2 USERDISK
part library PARTLIB LIBRARY
program library PROGLIB LIBRARY
pod library PODLIB LIBRARY
help library HELPLIB LIBRARY

Items limited to one per UUT directory

File Name Type
reference designator list REFLIST REF
node ligt NODELIST NODE

t

On the 9105A only.

EDITING A USERDISK 2.9.

2-32

An example of the edit window and information window
formats of a userdisk screen is shown in Fgure 2- 11.

The edit window shows the various directories and files on the
userdisk.

O

O

The information window includes the following fidds

NAME: The editor digplays the name of the userdisk in
this fieddd. The name is one of the following:

HDR - The hard disk
DRI - Floppy disk drive 1
DR2 - FHoppy disk drive 2 (9105A only)

DESCRIPTION: Enter text describing the contents of the
userdisk in this fidd.

STARTUP UUT: Enter the name of a UUT on the

userdisk. This UUT directory automaticaly becomes the
current UUT directory when the system is powered up

with this userdisk.

PROGRAM: Enter the name of a program in the dartup
UUT directory. This program is automdicaly executed
when the system is powered up with this userdisk.

DISK FREE: The amount of disk gspace that is dill
available. This fidd cannot be edited.

DISK PROTECTED: The editor fills in this fidd thet

indicates whether the physica disk is write protected. This
fidd is not the same as the write-protection field for files.
Disk write protection is accomplished in hardware
(physicaly), whereas file protection is accomplished in
software.

To edit any item in the userdisk, press the Edit key and enter the
name of the item. The edit and information windows for any
directory are smilar to the userdisk screen, except that the sub-
directory names are different and no STARTUP UUT nor
PROGRAM field appears.

2-33

PROGRAM: DISK PROTECTED: NO

PRESS A COMMAND KEY OR HELP KEY
DIRECTORY OF /HDR (USERDISK)

Units Under Test (ULT):

Text Files (TEXT):

Part Library (LIBRARY):
PARTLIB

Pod Library {LIBRARY):
POGLIB

Program Library (LIBRARY):
POGLIB

REMOVE GAVE FORMA

Figure 2-1 1: Userdisk Screen

2-34

e

S

CURSOR COMMANDS 2.10.

Four arrow keys, six editor keypad keys, and three softkeys
control the pogtion of the cursor. These keys help you make

changes quickly.

The arrow keys move the cursor a character a atime:

Up Arrow and Down Arrow: The up arrow key moves the
cursor up one line. The down arrow key moves the cursor
down one line.

If you move the cursor up when it is on the fird line of the
display, the display scrolls down a line. If you move the
cursor up when it Is on the fird line of the file, the 9100A
beeps. If you move the cursor down when it is on the last
line of the display, the display scrolls up a line If you
attempt to move the cursor down when it is on the last line
of the file, you will hear a beep and the cursor will remain
in its current location.

Right Arrow and Left Arrow: The right arrow key moves
the cursor one character to the right or, if the item contains
fields, one fidd to the right. The left arrow key moves the
cursor one character to the left or, if the item contains
fields, one fidd to the Ieft. If there are no characters or
fields in the direction you move the cursor, you will hear a
beep.

The following editor keypad keys change the postion of the
CUrsor:

Begin Line: This key moves the cursor to the first

character of the current line. If the file contains fidds, the
cursor moves to the first character pogtion in the left-most
editeble fidd of the current line.

End L: This key moves the cursor to the last character of
the current line If the file contains fidds, the cursor

2-35

2-36

moves to the fird character podtion in the right-most
editeble fidd of the current line.

Sc Fd (Scroll Forward): This key scralls the display
up 20 lines, moving the bottom line to the top of the edit
window. The cursor moves to the first character of the top
line.

Sc Bk (Scroll Backward): This key scrolls the
disolay down 20 lines, moving the top line to the bottom
of the edit window. The cursor moves to the first
character or first fidd of the bottom line. If fewer than 20
lines exist before the currently displayed lines, the display
is scralled until the firg line of the file gppears and the
cursor will stay on the current line.

Beg F (Begin File): This key moves the cursor to the
first character of the file. The text is scrolled back to the
firg screen if necessary. If the file contains fidlds, the
cursor moves to the firs character postion in the first
editable fidd.

End F (End File): This key moves the cursor to the last
character of the file. The text is scrolled forward to the last
screen if necessxy. If the file contains fields, the cursor

moves to the firs character pogtion in the last editable
fidd.

The fdlowing softkey commands change the pogtion of the
Cursor:

GOTO: This command, which is active when the GOTO
softkey label gppears, moves the cursor to the beginning of
any line. When you press the GOTO softkey, the editor
prompts you for the line number:

GOr0 LINE

Lines are numbered consecutively from the top of the file.
If you enter the number of a line that does not exig or is
not editable, the 9100A displays an error message.

O

SEARCH: This command, which is active when the

SEARCH softkey labe appears, moves the cursor to the
next occurrence of a character string you specify at the
prompt:

SEARCH FOR

The character string may be a word, part of a word, or
severd words, up to 20 characters in length. The search is
cae sendtive the upper-case “A”, for example is
different from the lower-case “d'.

If the editor does not find the character string between the
cursor position and the end of the file, the search wraps
around to the beginning of the file and continues. If the
editor does not find the character string anywhere in the
file, it digplays an eror message. The editor retans the
gring you enter and offers it as a default the next time you
issue the SEARCH command.

The searchdring can contan one or more wildcard

characters (*). For example, if you specify MOD*, the
editor finds the next occurrence of MOD followed by any
character: MOD2, MODULE, or MODE, for example. If
you want to search for a litera adterisk (*), enter two
agterisks (**) in the search string. For example, to search
for the expression 2*3, you would enter the search gring
2**3. By entering two adterisks, the editor interprets the
character sequence as a literd adterisk rather than as two
wildcard characters.

To reissue your last search (and avoid re-typing the search
dring), press the Shift key and hold it down while
pressing the SEARCH softkey.

REPLACE: This command, which is active when the

REPL softkey label appears, moves the cursor to and
replaces the next occurrence of a character string you

Specify a the prompt:

REPLACE W TH

2-37

The dring is replaced with a second sring that you
gpecify. The search is peformed exactly as for the
SEARCH command. The replacement <ring cannot
contain a wildcard.

To reissue your lagt replace command (and avoid re-typing
both the search dring and the replace dring), press the
Shift key and hold it down while pressng the REPL
softkey.

NOTE

Programs and node lists may contain check
messages. These lines are not editable. When
the string to be replaced is found in one of
these lines, the cursor will be positioned at the
beginning of the string but the replacement will
not be carried out.

WINDOW COMMANDS 2.11.

2-38

The following keys control the display of windows that cover
the edit window:

Msgs: This key turns the messages window on and off.
Help: This key turns the help window on and off.

Info: This key turns the information window on and off.
This key is only active when you are editing a file.
FAULT (softkey): This softkey turns the fault window

on and off. The FAULT softkey is active when editing a

stimulus program response file or when using the
debugger.

O

O

BLOCK COMMANDS 2.12.

The MARK, CUT, YANK, and PASTE commands are available
for ddeting, moving, and copying blocks of text within a file or
between two files The editor mantans two buffers for
temporary text storage. By moving text to and from these
buffers, you can save time and effort while making changes to
exiding text. Figure 2-12 illustrates how you delete, move, and
copy text.

The following commands are active only when ther softkey
labels appear; in addition, the CUT and YANK commands are
active only when you use the MARK command:

. MARK: This command identifies a block of text for use
with the CUT or YANK command. You can mark a set of
contiguous characters or contiguous lines, but not a
combination of both (you cannot mark one and a hdlf lines,
for example). One end of the block is the cursor position
when you press the MARK softkey. The other end of the
block is the cursor position when you press the CUT or
YANK softkey. You can use the arrow keys or the cursor
movement keys on the editor keypad to move the cursor
forward or backward. As you move the cursor, the block
is highlighted in inverse video, and a message in the datus
line reminds you that you are in the process of marking a
block.

To cancd the MARK command and turn off the block
marking, press the MARK softkey again. The block
marking aso disappears when you press the CUT softkey
or YANK softkey.

. CUT: This command ddetes the marked block from the

disilay and moves it into one of the temporary buffers,
replacing the current buffer contents. Pressng the CUT
softkey aone moves the block into buffer #l; pressng the
Shift key and the CUT softkey at the same time moves the
block into buffer #. After the CUT command is

2-39

o
1. MARK
2. CUT
1. MARK
2. GUT

3. Move Cursor

4. PASTE
I Buffer | Copy:

1. MARK

2. YANK

3. Move Cursor
4. PASTE

Figure 2-12: Deleting, Moving, and Copying Text

2-40

G

performed, the softkey labds line disgplays a message
indicating how many characters or lines were affected.

. YANK: This command copies the marked block into one

of the temporary buffers, replacing the current buffer
contents; the text remains on the display. Pressng the
YANK softkey done copies the block into buffer #;
pressing the Shift key and the YANK softkey at the same
time copies the block into buffer #2. After the YANK
command is peformed, the message line displays how
many characters or lines were affected.

® PASTE: This command copies the contents of one of the
temporary buffers into the dislay just before the cursor
postion. Pressng the PASTE softkey aone copies the
contents of buffer #l; pressng the Shift key and the
PASTE softkey at the same time copies the contents of
buffer #2. The PASTE command does not dter the
contents of the buffers.

To move text between two files, smply edit the file containing
the text to be copied and use the MARK and CUT (or YANK)
commands to copy the text block to a buffer. Then edit the
dedtination file and PASTE the text block from the buffer into
the desired location.

GUIDED FAULT ISOLATION COMMANDS 2.13.

The following commands are associaed with the LEARN
operation, which gathers response data from a good UUT and
dores it in a simulus program response file. The LEARN
operation involves executing a simulus program, gethering
sgnatures, recording level history and count data, and oring it
for future use. Section 5, “Guided Fault Isolation,” describes
these commands in detall.

2-41

The following commands apply only to stimulus program
response files:

* |LEARN: Thiscommand gathers a set of node response
data from a known-good UUT while a stimulus program is
executed. It generates the necessary operator prompts,
gxecutes stimulus programs, and measures the response

ala.

J SELECT: This command selects the data in the field at the
cursor location as data to be saved in the responsefile.

You view the learned information and decide what should
be saved.

* OFFSET: Thiscommand determines the offset delay at

which clocked measurements should be taken with the
probe and 1/0 module.

The following commands operate only on UUT directories:

. SUMMARY: This command analyzes the compiled
database and generates a summary describing the GFl
coverage of the UUT. For more information, see the
“Guided Fault Isolation (GFI)" section of this manual.

The following command operates only on UUT directories,
POD directories, and the PROGLIB directory:

. COMPILE: This command selects the TL/I GFl or UFI
compiler.

2-42

The following command operates only on programs and node

ligs

TERMINAL

CHECK: For programs, the CHECK command looks for

TL/I syntax errors that are not detected by the line syntax
check. For node lists, the CHECK command detects
duplicate pin occurrences. Error messages are inserted in
the program or node lig after the line in which the error is
detected.

NOTE

CHECK messages begin with a series of plus signs

(+) so that you can locate the messages quickly using
the SEARCH command.

EMULATION COMMANDS 2.14.

The following command performs terminal emulation
operations:

TERM: This command makes the 9 1 OOA programmer’s

interface act as a termind. You can connect another
computer through an RS-232 port on the 9100A
mainframe. For more information on this command, see
the “Termind Emulaor” section of this manud.

CAD TRANSLATOR COMMANDS 2.15.

The following command performs trandations of CAD system
output files into a format acceptable by the 9100A/9105A.

CAD: This command trandates a CAD system output file
into the forma required by the 9100A/9105A for a
reference desgnator lis (REFLIST) and a node ligt
(NODELIST). For more information on this command,
see the “CAD Trandator” section of this manud.

2-43

2-44

Q Section 3
Overview of TL/A

GETTING STARTED WITH TL/1 PROGRAMS 3.1.

You may find it helpful to refer to the TL/1 Reference Manual
for the specifics of command syntax while reading through this

U overview of the TL/1 language.

Features of TL/1 3.1.1.

TL/1 is a structured programming language specificdly designed
for convenient use in deveoping tet and troubleshooting
routines. Its BASIC-like statements are easy to learn and use.
Command vocabulary is based on the vocabulary of the test
environment, minimizing language leaning time For mogt
commands, default entries are avalable to smplify the process
of writing test and troubleshooting programs.

There are pre-programmed functiona tests for the bus circuitry,
RAM, and ROM. TL/I ds0 includes dimulus and response-
gathering capabiilities both at the microprocessor bus and & up to
160 nodes a any place on your UUT. In addition, there are
fault-handling provisons which dlow you to choose the
appropriate action for any expected fault on your UUT.

3-1

TL/l is cgpable of many other functions It can efficently
manipulate numeric, dring, and floating-point data It can
perform input and output operations on the operator's display
and keypad, the monitor and programmer’s keyboard, the two
RS-232 ports, the IEEE-488 port, and text files on the disk
drives.

Locations of TL/1 Programs 3.1.2.

TL/1 programs may exist in three places in the userdisk.

. UUT Directory « In each UUT directory, there are
programs that perform testing or stimulus actions for only
that type of UUT. The mogt likdy darting point for
writing a first program would be in a UUT directory.

¢ Program Library - Generd purpose programs which might
be useful for more than one UUT may be sored in the
program library.

. Pod Libray -~ The pod library contains specid TL/I
programs, which are used to support various pod
activities.

Figure 3-1 shows each of these locations for TL/l programs. A
diagram and description of the complete 9100A/9105A file
gructure is contained in “Userdisk Organization” located in
Section 2 of this manud.

Bringing Up a Program Screen 3.1.3.

3-2

TL/I programs are entered at the programmer’s keyboard using
the 9100A editor. The editor understands the structure of TL/I
satements and checks the syntax of each line after you type it in.

To write a TL/I program in a UUT directory, firs enter the
editor by pressng the EDIT key on the operator's keypad. This
trandfers control to the programmer’s keyboard and monitor and
puts an editor’s screen on the monitor. Then, enter the name for
the UUT and the name for the program. There are two ways to
enter these names (methods A and B appear on the following

pages).

9100A Hard Disk or
Microfloppy Disk

uuT
Directory #1

VUT TN
Program #1

|

Program
Library

NES

Library TU1
Program #1

Pod Descrip-
tion #1

]
“o—r—

Pod-Related
TW
Programm #1

Figure 3-| : Locations of TL/1 Programs

3-3

3-4

A. Usng a complete pathname:

1.
2.

Press the Edit key on the programmer’s keyboard.

Enter a disk name, a UUT directory name, and a
program name together as shown in the example
below, and then press the Return key:

/hdr/abc/testl A

(“hdr” is the disk name, “abc” is the UUT directory
name, and "test101" is the program name.)

Sdect PROGRAM as the TYPE by pressng the
Field Sdect key as many times as necessary to bring
the word “PROGRAM” into the TYPE fied. Then,
press the Return key.

B. Moving down the file tree (see Figure 3-I):

1.

The userdisk screen should now be displayed (see
Figure 2-3).

If any other screen is displayed, press the Quit key
on the programmer's keyboard and wait for the
monitor's display to change. If the new display is
not the userdisk screen dther, repesat this step until
the userdisk screen does appear. If you press Quit
too many times, control will return to the operator’'s
interface and you will need to press the EDIT key on
the operator’s keypad to get back into the editor.

Press the Edit key on the programmer’s keyboard.

Enter a UUT directory name (for example, “abc’)
and press the Return key.

4. Sdect UUT asthe TYPE by pressing the Field Sdlect
key as many times as necessy to bring the word
“UUT” into the TYPE fidd. Then press the Return
key. The requested UUT directory will be displayed
on the monitor.

5. Press the Edit key agan and enter a program name
(for example, "test101") followed by a Return.

6. Sdect PROGRAM as the TYPE by pressng the
Feld Sdect key as many times as necessary to bring
the word “PROGRAM” into the TYPE fidd. Then,
press the Return key.

Using ether method A or method B to enter the UUT name and
program name will cause the program screen to appear on the
monitor. See Figure 3-2 for an example of a program screen for
anew program.

Pressng the Info key shows the information window, which
digplays the space avalable on the disk and the sze of the
program file. In addition, you can enter a short description for
the program and change the program’s write protection status.
Pressng the Info key again will turn the information window
off. Section 2 of this manud, “Editor,” explains more about this
information window.

The fird datement of the program must be the program
gatement and it must use the same name (<program nhame>) as
the one used for the program fiie name. The last statement of the
program must be an end statement, which is ether endprogram
or end <program name>, where the program name is the same
name as the program file name.

35

FlL=Ff2=Ff3¢ =5 =FE= [/ 8. = g
80TO SAVE BUB MARK PASTE REPL| SEARCH CHECK

3-6

Figure 3-2: Program Screen

You can exit the program by pressing the Quit key, which
moves you up one level in the file tree to the UUT directory. Or
you can do a quick exit to the operator’s keypad and operator’s
display by pressng the Shift key and the Quit key a the same
time. If you do this, when you enter the editor the next time,
you will be returned to the same screen from which you did the
quick exit.

Structure of a TL/1 Program 3.1.4.

Figure 3-3 shows that TL/1 is a block-structured language in
which executable commands are preceded by any necessary
definition blocks.

There are four types of definition blocks that may be placed
within a TL/I program block:

. Declaration blocks Used to define the type and default
vadue of variables These definition blocks begin with a
declare statement.

. Function definition blocks Used to define a function,

which may be cdled from any place within the program
block that defines that function. These definition blocks
begin with afunction statement.

. Fault condition handler definition blocks: Used to define a

block which is cdled when a UUT fault condition is
detected. These definition blocks begin with a handle
Satement.

. Fault condition exerciser definition blocks Used to define
a TL/I block which is cdled when a UUT fault condition
is detected and the LOOP key on the operator’s keypad is
pressed. These definition blocks begin with an exercise
Statement.

3-7

3-8

Figure 3-3. Block Structure of

TL/1 Programs

C’\; Writing a TL/1 Program 3.1.5.

Suppose you type in the program shown in Figure 3-4. To
make the task easier, you might wish to leave out the
exclamation points and any text that follows on a line, since the
exclamation point is used to indicae the beginning of a
commernt.

If you make a mistake, you can move the cursor to the right of
the offending characters (or character) and press the delete key
once for each character to be deleted. Or, to delete the character
under the cursor, you can press the Ctrl key and the Delete key
gmarked with an X) a the same time. More powerful editin
egiures are described in Section 2, “Editor,” of this manud.
These features include ddeting, moving, and copying ether
blocks, lines, or parts of lines.

You may have noticed that the 9100A is persstent about syntax
errors and will not let you off a line that contains such an error.
This feature is for Keour protection, but it might occasondly lead
to frudration if the necessxy correction Is not immediately
obvious. The 9100A provides three solutions for this Stuation.

The firgt solution is to press the Help key on the programmer’s
keyboard to bring up a help window. Pressng the SEARCH
softkey and entering the TL/I command that has given you
difficulties will pogtion you in the hep file where there ae
examples of this command. You can use the Scroll Forward,
Scroll Backward, up arrow, and down arrow keys, as well as
the SEARCH softkey to move around in the help file. When
you are finished with the file, press the Help key again and the
help window will disappear.

39

program test101 I The program nane nust match
I the program file nane
ch = open device "/termR", as "output" ! QOpens a channel for
I output to the nonitor
k=l
loop while k <= 12 ! First line of a loop block
I to loop twelve tinmes.
print using "The nunber is #e», k ! print using allows printing
I a formatted colum of
I decimal nunbers
wait time 800 I Wit 800 nilliseconds
I before displaying a new
' nunber
k=k+l L
end |oop I Last line of the loop blo ¢
print I Send a blank line
print "THAT'S ALL FOLKS!"
wait time 5000 !

close channel ch

end program

3-10

Allows time to view the
I Messages W ndow

I Cose the channel ch

Could also be witten as:
end test101

Figure 3-4; A Practice TL/1 Program

The second solution is to press the Begin Line key to move to
the beginning of the line and type in an exdamation point. This
makes the whole line a comment, and the syntax checker doesn’t
care wha you have written. This can be of vaue if you need to
save the program and come back to it later.

The third solution is to dissble the line syntax checking by
smultaneoudy pressing the Shift key and the CHECK softkey.
The datus line a the top of the CRT displays the current line
checking mode as ether ‘[CHECK is ON]' or ‘[CHECK is
OFF]*. The line checking mode cannot be changed until the
current line is correct.

Using the CHECK Function 3.1.6.

As you write each line, the editor checks the line for syntax
errors. After you have entered the whole program, you need to
check the program for errors that can be detected only by
comparing each line to the other lines in the program. The
CHECK softkey initiates this action.

CHECK identifies the same errors that the TL/l compiler finds.
Usng CHECK has the effect of embedding the compiler error
messages into the program. Both CHECK and the compiler have
options to control the type of waning messages that are
generated. They share a didog window that controls the option
stings. If you change an option for the CHECK function, the
compiler options will automaticdly be changed to match.

'é'gis section describes how to check TL/I programs from the
itor.

Check procedure

The following two procedures are used to check a TL/l source
program:
¢ Checking programs by using the current options.

¢ Checking programs by changing the current options.

Use the first procedure if the current option settings are correct.
Use the second procedure if you want to change the options, or

3-11

if you want to see what the options are. Each time the editor is
darted, the options are set to system default values that report
only errors, and no warnings.

Check procedures (using current options)

1.

Press the CHECK softkey. Observe the prompt, USE
CURRENT TL/I COMPILER OPTIONS.

After the USE CURRENT TL/I COMPILER OPTIONS
prompt, use the Fed Sdect key to sdect YES. This
prompt controls the type of optiond warning messages
that are generated when a program is checked.

Press the Return key to begin checking. Observe the
message “CHECKING . .." on the bottom of the monitor
screen. . When the check operation is complete, a
message like “3 errors or warnings detected” is displayed
on the bottom of the monitor screen. In addition, the
CHECK function inserts error messages into the
rogram text. Each error message gppears in bold and
Beglns with the characters “+++*. If you cannot see any
of these errors because the program is longer than one
screen, the editor search command can be used. Press
the SEARCH softkey and enter “+++” as the search
sring as shown below:

SEARCH FOR +++

If the CHECK function does not find any errors, the
message “0 errors detected” is displayed.

Check procedures (by changing current options)

3-12

1.

Press the CHECK softkey. Observe the prompt, USE
CURRENT TL/I COMPILER OPTIONS.

After the USE CURRENT TL/I COMPILER OPTIONS
prompt, use the Field Select key to select NO, then press
the Return key.

Observe that the TI/I Compiler Options Didog Window
has appeared. This window is shown in Figure 3-5.
Observe the prompt, “Generate standard warning
messages’. Use the Fidld Sdect key to sdect YES or
NO. This prompt controls whether the checker will
enerate optiond warning m es. Warning m es
gre precaJtpitonary only, gnd eaﬁvﬂl’:’se of TL/Ig corms
that may be bugs.

Use the Fied Sdect key to sdect YES. Observe that
when YES is sdected, five additional prompts appear in
the lower haf of the didog window, as shown in Figure
3-6. Press the down-arrow key to move the cursor to
the first prompt.

Observe the five prompts, Undeclared formal
parameters, Implicit variables, Uninitialized global
variables, and Unused globa variables. These prompts
can be turned on and off independently, and control
whether the checker will generate warning messages
when it detects these conditions in a program. Use the
Field Sdect key to sdect YES or NO for each prompt.
Use the Return key or arrow keys to move between the
prompts. The section entitted “Using the Compiler
Options for Diagnostics” further on in Section 3
describes each prompt in detail.

Setting each prompt to YES ingructs the checker to
check for each of these conditions, and results in the
maximum number of warning messages.

3-13

enerate siandard warning messages

Mo warning messages

Figure 3-5 : TL/1 Check Dialog Window

Figure 3-6: Lower Half of TL/1 Check Dialog Window

3-14

5. When dl five prompts have been responded to, press the
CHECK softkey (FIO) to begin the check. Observe the
message “CHECKING . .." on the bottom of the monitor
screen. . When the check operation is complete, a
message like “3 errors or warnings detected” is displayed
on the bottom of the monitor screen. In addition, the
CHECK function inserts error messages into the
program text. Each error message agppears in bold and
begins with the characters “+++‘. If you cannot see any
of these errors because the program is longer than one
screen, the editor search command can be used. Press
the SEARCH softkey and enter “+++” as the search
gring as shown below:

SEARCH FOR t++

If the CHECK function does not find any errors, the
message “0 errors detected” is displayed.

Using the Shift-CHECK Function 3.1.7.

As you enter each line, the editor checks it for syntax errors.
This line syntax checking can be disabled for TL/I programs and
node lists. To disable the line syntax checking, edit a program
and smultaneoudy press the Shift key and the CHECK softkey.
This key combination will toggle the line checker ON and OFF.
The current mode is displayed in the gatus line at the top of the
monitor as shown below:

[CHECK is ON] or [CHECK is OFF]

When CHECK is ON, the line syntax is checked when you
leave a line tha you have modified. An eror message is
displayed if the line contains a syntax error, and you cannot
move the cursor off the line until the syntax error has been
corrected.

When CHECK is OFF, the line syntax is not checked. In this
mode, you can cregte syntectically incorrect lines. These line
gyntax errors are not reported until you compile the program or
use the CHECK function.

The line checking mode cannot be changed until the current line
is correct.

3-15

Using the Debugger 3.1.8.

3-16

Once the program passes the CHECK function, it is ready to be
tested to make sure it does what you intend. The 9100A
debugger can be used for this purpose. The debugger dlows
execution of TL/I programs from the programmer’s keyboard,
setting of software break points, sngle-stepping, and setting or
examination of varigbles.

To use the debugger on the program you have entered, press the
DEBUG softkey, then the EXECUTE softkey, and findly the
Return key. If no erors are found the program will run to
completion and the following message will appear a the bottom
of the monitor:

Compl ete, status = PASS <PRESS RETURN>

The reaults for the program test10l ae diglayed in the
messages window (see Figure 3-7). After program completion,
the messages window disgppears, however, you can toggle the
messages window on and off with the Msgs key to review the
results of your program.

If an error is found, the debugger displays an error message on
the bottom line of the monitor display and the debugger will
place the cursor at the line where the error was found. As an
example, you might want to try editing the next-to-last line of
program test101 by changing the channd name to chl. Then,
run the debugger to see how it handles errors.

Pressing the Quit key exits the debugger and returns to the editor
to dlow you to make any changes necessary in your program.

After you fix any erors that the debugger catches automaticdly,
you return to the debugger for its main uss making sure tha
your program does wha you intend. To snglestep your
programn while in the debugger, move the cursor down to the
fird executable line and press the BREAK softkey. Figure 3-8
shows what the debugger display will look like for the example
program you entered.

O

The number IS 1
The number is 2
The number is
The number is
The number is
The number is
The number is
The number is
The number is
The number 1is 10
The numberis1l
The number is 12

© 0~ Ul A

THAT’S ALL, FOLKS!

Figure 3-7: Results of the Practice Program (testl 01)

3-17

program tesilfl
BRK: ch= open device "Alermd’, as Toutput”

Joop while k{=12
print using ‘The number is #84nl®, k
wail time BP9
k=k+l

end loop

print

print “THAT’S L FoLKSI~

wait time 5889

close channel ¢h
end program

i

STEP MEXT LONT EXECUTE INIT PBREAK SHOM SET SEARCH FAULT

Figure 3-8: Debugger Screen Example

3-18

O

Now, when you press the EXECUTE softkey and press the
Return key, the program will stop at the indicated breakpoint and
make it possible to step through your program using the STEP
softkey. Other debugger actions available when stopped in the
middle of a program are explained in Section 4, of th|s manual.

Compiling a TL/1 Program 3.1.9.

9100A systems with version 6.0 or later software execute

compiled TL/I programs. You can let the 9100A automatically

compile the programs when you execute (this is the default

t st%rgtbehavior), or you can precompile your programs from
e editor.

Precompiling programs has the following advantages:

. Programs which are precompiled will start executing
faster.

® Precompiling programs lets you find al the compilation
errors at one time during the program development
process, rather than finding the errors one-at-a-time during
program execution.

. Precompiling programs allows you to distribute object
programs rather than TL/I source programs. An object

pro fragjn is an execute-only program that cannot be
Ified.
NOTE

It is strongly recommended that you precompile all
your TL/1 programs before executing them.

The following paragraphs describe how to precompile TL/I
programs from the editor.

3-19

Compiling Procedures

3-20

The following procedures dlow you to compile a TL/I source
program (type PROGRAM) into an object program (type
OBJPROG). Each gep includes a discusson of the available
options. Two procedures are provided:

. Using the Current Compiler Options.
¢ Changing the Current Compiler Options.

The TL/I compiler has two types of options:

® An option to save the compiler error messages to a text
file

® Options to control whether the compiler generates warning
messages about certain types of TL/I congtructs.

The option settings are shared by the TL/l compiler and the TL/I
CHECK function.

Warning messages atempt to identify features of the TL/I
program that are likdy to be bugs or to be wasteful. For
example, one option causes the compiler to generate a warning
message about variables that have not been assgned a vaue
before they are used. Warning messages are precautionary only,
and a progran which generates warning messages can be
executed.

Each time the editor is tarted, the compiler options are st to
system default values that report only errors, and no warnings.
If you change the compiler options, your choices become the
new default vaues that will be used throughout the edit session.

Use the firgt procedure if you want to compile a program using
the current compiler options. Use the second procedure if you
want to change the compiler options, or if you want to see what
the current compiler options are.

Compiling procedure (using current options)

1.

Edit the UUT, PROGLIB, or POD that contains the
programs that you want to compile. Observe that a
directory is displayed, and that the program (or
%ng)grng? I\BIO be compiled are listed in the directory under

Press the COMPILE softkey. Observe the prompt,
COMPILER TYPE.

After the COMPILER TYPE prompt, use the Field Select
key to display TL/I in the Reply window, then press the
Return key. Observe the prompt, COMPILE NAME.

After the COMPILE NAME prompt, enter the name of
the TL/ program to be compiled. More than one
program can be selected using the * wildcard. For
example, F* compiles al the programs that begin with F.
Entering just * compilesall the programs. Press the
Return key after entering the COMPILE NAME
selection. Observe the prompt, USE CURRENT TL/I
COMPILER OPTIONS.

After the USE CURRENT TL/I COMPILER OPTIONS
prompt, use the Field Select key to select YES. This
prompt controls the type of optional warnin? m es
that are generated when a program is compiled. It also
controls whether the compiler messages are saved in a
test file or smply written to the monitor display.

Press the Return key to begin the compile. Observe that
the compilation process begins with the display “TL/
Compiler” on the monitor display. As the compiler
generates error messages, these are displayed on the
monitor. Use the Scroll Lock key to stop the messages
from scrolling off the monitor screen. Compilation is
complete when the message “Press Msgs key to
continue” appears. To embed the compiler error and
warning messages directly into the program, edit the
program and press the CHECK softkey. For more
Information, refer to “Using the CHECK Function” in
Section 3.

3-21

Compiling Procedure (by changing current options)

3-22

1.

Edit the UUT, PROGLIB or POD tha contans the
programs that you want to compile. Observe that a
directory is displayed, and that the program (or
programs) to be compiled are listed in the directory under
PROGRAM.

Press the COMPILE softkey. Observe the prompt,
COMPILER TYPE.

After the COMPILER TY PE prompt, use the Field Select
key to diplay TL/I in the Reply window, then press the
Return key. Observe the prompt, COMPILE NAME.

After the COMPILE NAME prompt, enter the name of
the TL/I progran to be compiled. More than one
program can be sdected usng the * wildcard. For
example, F* compiles dl the programs that begin with F.
Entering just * compiles dl the programs. Press the
Return key after entering the COMPILE NAME
sdection. Observe the prompt, USE CURRENT TL/I
COMPILER OPTIONS.

After the USE CURRENT TL/I COMPILER OPTIONS
prompt, use the Field Select key to sdect NO.

Observe that the TL/I Compiler Options Dialog Window
has appeared. This window is shown in Figure 3-9.
Observe the prompt, “Save error messages in text file’,
During compilation, the compiler error messages ae
written to the monitor display. These messages can dso
be saved in atext file for later review.

If you want the messages to be saved in a text file, enter
the name of the text file and press the Return key. If a
file by that name dready exidts, it is deleted.

O

Figure 3-9: TL/1 Compiler Dialog Window

3-23

3-24

If you do not want to save these messagesin a
text file, leave the field blank, and press the
Return key.

Observe the prompt, “Generate standard warning
messages’. Use the Field Select key to select
YES or NO. This prompt controls whether the
TL/I compiler generates optional warning
messages when it compiles a program. Warnin
messages are precautionary only, and advise 0
TL/l constructs that may be bugs.

Use the Field Select key to select YES and press
the down-arrow key. Observe that when YES is
selected, five additional prompts appear in the
lower half of the Dialog Window, as shownin
Figure 3- 10.

Observe the five prompts, Undeclared formal
parameters, Implicit variables, Uninitialized
globa variables, References of unassigned
variables and Unused global variables. These
prompts can be turned on and off independently,
and control whether the compiler generates
warning messages when it detects these
conditionsin aprogram. Use the Field Select
key to select YES or NO for each prompt. Use
the Return key or arrow keys to move between
the prompts. “Using the Compiler Options for
Diagnogtics’ further on in Section 3 describes
each prompt in detail.

Setting each prompt to YES instructs the
compiler to check for each of these conditions,
and results in the maximum number of warning
messages. When al five prompts have been
responded to, press the COMPILE softkey (F3).

The compilation process begins with the display
“TL/I Compiler” followed by a list of status and
error messages. Use the Scroll Lock key to stop
the messages from scrolling off the monitor
screen. Compilation is complete when the
message “Press Msgs key to continue” appears.

e

O

Figure 3-10: Lower Half of TL/1 Compiler

Dialog Window

3-25

To embed the compiler error and warning
messages directly into the program, edit the
program and press the CHECK softkey. To
review the compilation messages, edit the text file
specified in step 6 (if applicable).

Using the Compiler Options for Diagnostics

When compiling a TL/l program, part of the procedure includes
changing the TL/I compiler options. The compiler has five
options which control the warning messages which can be
issued. These options are:

® Undeclared formal parameters:. Warns about
undeclared formal parameters to programs, functions,
exercisers or handlers.

®* Implicit variables: Warns about variables declared
implicitly by assigning to them.

® Uninitialized global variables: Warns about
uninitialized globa variables.

®* References of unassigned variables: Warns about
variables that were not assigned a value before being
referenced (this is the default only for string variables).

® Unused global variabless Warns about global
variables that are declared but not used.

3-26

C

Diagnogtics emitted during compilation have the following
format:

podtest(5) :warning:variable 'y' unused
The parts are:
File Name podtest
Line Number of the Offender: (5)
(Optiona) Non-fatd Error: warning:
Error Description: variable 'y unused
The following TL/I program contains some illudrative errors:

program foo (arxgl, arg2)
nuneric argl

string sl

y = = 3

sl =3

sl = arg2
end bar

The messages without any option causes the following outpuit:

foo(5): syntax error

foo(6) : operands of '=' have inconpatible types

foo(8): warning: END nane 'bar' does not match
program name ‘foo’

foo(3): warning;, variable 's1*' set but not used

foo(2): warning: variable 'argl' unused

A few of the diagnogtics above deserve specid mention. Fird,
note that line 6 attempts an assgnment of a numeric congant to a
gring variable. Where possble, the compiler options verify the
legdity of types in al expressons, assgnments, €ic.

3-27

Next, notice that variable 9 is declared as not used. This
warning is issued even though d has had a value assigned to it,

in the belief that a variable is not really used unless it is
referenced somewhere in an expression. This is only a warning.

Since the compiler options check for a Ianq;e number of possible

errors, it is not feasible to illustrate all of them here. It is
important to note that the compiler options cannot find errors that
occur at run-time; for example, expressions that evaluate to out-

of-range values will not be detected. The remainder of these
examples discuss certain key features of the compiler options,

particularly optional diagnostics controlled by the selected
option.

Example of an Undeclared Format Parameter
Warning

This option warns about undeclared formal parameters to
programs, functions, exercisers, or handlers. With this flag, the
test program above, foo, would have an additiona diagnostic

generated:

foo(7): warning: type of argunent 'arg2'
undecl ared

Example of an Implicit Variable Warning

3-28

This option turns on diagnostics about variables that are declared
by assigning to them, as opposed to a forma declaration. Most

users will have little use for this particular diagnostic, as such
implicit declarations are supported by the TL/I language
specification. However, some users prefer to declare all
variables explicitly, and may find this diagnostic useful. For
example, the compiler option generates no diagnostic output for

the following program:

program test2
i =3
test3 (i)

end program

O

However, with this option, the compiler generates the following
diagnostic:

test2(2): warning: 'i' inplicitly defined

Ancther reason to avoid implicit type declarations is that the
compiler option may not always be able to discern the type of a
variable declared this way. The compiler option does not track
the types of values returned by functions and programs, since
there Is no explicit support by the language syntax for declaring
this information. Theretore, the following implicit declaration of
_thfe variable foo does not give the compiler option any type
information:

foo = funcl (3)

Suppose the actua execution of the above assignment results in
foo having type numeric. Since the compiler option was not
able to determine foo's type, it will not warn about the
subsequent type mismatch in the following statement:

foo = "faol

If foo had been declared explicitly, the compiler option would
have caught this error.

Example of an Uninitialized Global Variable Warning

This option turns on diagnostics about uninitialized global
variables. It isincorrect to use aglobal variable without first
assigning it a value, either via a default value specification in the
declaration or via an assignment statement. TL/I assigns
reasonable values to uninitialized globa variables, which is the
reason why this feature is optional.

3-29

If this option is not selected, the compiler generates no
diagnostics for the following TL/I program:

program test3
function foo
decl are
gl obal numeric globl
global numeric gl ob2
gl obal numeric glob3 = 5

global numeric gl ob4
end declare

globl = 3
end fool
function foo2

decl are

global nunmeric globl
global numeric glob2 = 4
global numeric gl ob3
global nuneric gl ob4
nureri c nl
nuneric n2
end declare
nl gl obl
nl gl ob2
nl gl ob3
nl gl ob4
nl n2
n2 = nl
end foo2
fool ()
foo2 ()
end program

With the option selected, the compiler generates the following
diagnostic:

test3(7) : warning: global variable 'glob4'
never assigned a value

The compiler does not analyze the control flow of the program to
verify that globa variables are actualy initialized before they are
used, since this information cannot be determined by the kinds
of static analyses performed by the compiler option. All the
compiler can check is that globa variables have been initidized.

3-30

C} Example of a Reference of Unassigned Variables
Warning

This option turns on warnings about variables that were not
assgned a vaue before being used. This behavior is the default

for sring varigbles so0 this option actudly affects only numeric
and floating varidbles. For example:

program test4
declare numeric n
declare floating f
declare string s
fool (n)
foo2 (f)
foo3 (s)

end program

When andyzed by the compiler without this option, the compiler
produces the following diagnodtic:

test4(7): 's' has not been assigned a value
b With the option sdlected, two additional diagnostic lines appear:
test4(5): 'n" has not been assigned a value
test4(6): 'f' has not been assigned a val ue
test4(7): 's' has not been assigned a value

Example of an Unused Global Variable Warning

This option turns on diagnostics about unused globa variables.
For example:

program test5
function foo
declare
global nunmeric globl
gl obal numeric gl ob2
end declare
end fool
function foo02
declare
global nunmeric globl
global nunmeric glob3

::\\ nuneric nl

3-31

end declare

nl = globl
gl obl = nl
end foo02
fool ()
foo2 ()

end program

If this option is not selected, no diagnostics are generated by the
compiler for the above program. If the option is selected, the
following two diagnostic lines appear:

test5(5) : warning: global variable 'glob2" unused
test5(11): warning: global variable 'glob3'" unused

Example of Built-In Function Checking

The compiler options is capable of checki_n% the use of built-in
TL/l functions (for example, dfi, podinto, etc.). With this
information, the compiler is capable of checking semantic
condraints on calls of built-in functions in either postiona or
keyword notation.

For positional notation function calls, the compiler checks the
quantity and types of the arguments. The compiler aso checks
that it islegal to cal the function in positional notation; for
example, gfi may be called only in keyword notation, aso
known as dlot notation. For example, for the following

program:
program testé6
gfi (3)
read (3,3)

wite ("foo", 3
end program

The compiler generates the following diagnostics:

test6(2): ‘'gfi' nust be called in keyword
notation

test6(3): too nmany arguments to 'read

test6(4): argument nunber 1 to 'wite' is the
wong type

3-32

0 For keyword notation function cals, the compiler checks the
U keyword names, also known as slot names, and types, and
ensures that the grouping of keyword arguments is legal. For

example, for the following program:

program test7
gfi fail "foo", status "bar'
gfi accuse 3
clip ref "foo"

end program

The compiler generates the following diagnostics:

test7(2) : illegal conbination of argunents to
Igfill

test7(3): argunent 'accuse' to 'gfi' does not
take a value

test7(4): required argunent ‘'pins’ to ‘clip" is
m ssing

Examples of Return Value Checking

— The compiler also monitors return statements to check that
U functions and programs do not return more than one type, and to
verify that functions and programs that return a value do not aso
“fall off the end” without returning a value. For example, for

the following program:

program test8 (arg)
declare nuneric arg
if (arg) then
return (3)
end if
return ("foo")
end test8

The compiler generates the following diagnostics:

test8(6): warning: 'test8 returns nore than
one type

3-33

For the following program:

program test9 (arg)
declare nuneric arg
if (arg) then
return (3)
end if
end program

The compiler generates the following diagnostics:

test9(6): warning: 'test9 has RETURN
(expression), and RETURN

Thisindicates that test9 isin danger of “falling off the end,”
when it has been established that test9 is expected to return a
value (a least in some context).

Examples of Control Flow Checking

The compiler dso analyzes control flow to verify that statements
are reachable. For example:

program test10
return (3)
foo (3)

end program

generates the diagnostic:
test10(3): warning: statement not reached

Analyses of control flow and return type often interact in ways
that the user should be aware of, especially since return type
diagnostics are sometimes difficult to get rid of if you tend to
return values from inside loops that are guaranteed to terminate
for reasons that are not obvious to the compiler. For example,
the compiler does not warn about “faling off the end” of the
following program:

program test11
if (foo ()) then
return ()
el se
return (3)
end if
end program

3-34

This is because control flow analyses revealed that “falling off
Q the end” was not possible. However, the compiler warns about
“falling off the end” of the following program:

program test12
declare nuneric i
for i = 0 to 100
if (foo (i)) then
return (0)
else if (bar (i)) then
return (1)
end if
next

end program
The compiler generates the following diagnostics.

test|2(10): warning: 'testl2' has RETURN
(expression), and RETURN

In the above example, it is not obvious to the compiler that the
loop will not terminate without returning (assuming that it does).

The smplest way to prevent the compiler warnings in this
() Stuation Isto add a return statement at the end.

The compiler does recognize that infinite loops of the format
loop . . end loop cannot be exited except via goto and return

statements. us the compiler does not warn about this
program:

program test13
| oop
if (foo()) then

return (3)
end if

end |oop
end program

o

3-35

However, the compiler warns about the equivalent program:

program test14

loop while 1
if (foo ()) then
return (3)
end if
end |oop

end program
The compiler generates the following diagnostic:

test14(7) : warning. ‘'testl4" has RETURN
(expression), and RETURN

The compiler does not examine the expression supplied to while
statements for the possibility of ever being false. Therefore, the
way to get the compiler to ignore return types for constructs that
depend on eventudly returning from ingde an infinite loop is to
use aloop . . end loop block to implement the loop.

Executing a TL/1 Program 310 |0

3-36

After being debugged, TL/I programs are usudly run from the
operator's keypad by pressing the EXEC key and entering the
UUT name and program name. Even though the program name
might be in lower-case within the program, the operator’s
interface allows you to enter it in upper-case. When you press
the ENTER key, the 9100A/9105A searches for your program.
First it looks in the currently selected UUT directory. If the
program is not there and if there is a pod plugged into the
9100A/9105A, the pod description for that pod is searched for
the program. If the program till isn’'t found, the program
library is searched.

A TL/I program can be executed by calling it from another TL/I
program. When one program calls another, the same three disk
locations are searched to find the called program.

T

If the TL/I program has been pre-compiled, the compiled form
of the program will be executed, otherwise, the source program
will be compiled and executed (the compiled form is not saved
on the disk). In addition, pre-compiled programs that are out-
of-date with respect to their source programs are automatically
recompiled before being executed.

TL/1 Syntax 3.1.11.

Each line of a TL/I program has up to three pieces, which must
be placed in the following order: label, satement, and comment.

A lineina TL/I program may consst of alabd only, a satement
only, a comment only, or any combination of these. It may dso
include none of them (a blank line).

The labd is a character string that meets the requirements for a
vaiable name (see Section 2.1, “Name Conventions,” in the
TL/1 Reference Manual) and that ends with a colon. A comment

begins with an exclamation point (!); none of the text after this

exclamation point is seen or executed by TL/I.

The TLII Reference Manual gives a complete explanation of
each TL/I command, including syntax in typed form
(metasyntax) and picture form (syntax diagram). The first pages
of the “TL/I Alphabeticd Reference’ section of the TL/I
Reference Manual show the conventions used in the syntax of
TL/I commands.

Many TL/I commands can be written in two forms: keyword
notetion and pogtiona notation.

With pogtiond notation, only argument vaues are entered and
they must be entered in the correct order. No argument values
may be omitted. A TL/l command written in pogtiona notation
might look like this

X = getronmsig (0, $7FF, $FFFFFFFF, 2)

3-37

With keyword notation, each argument value is preceded by a
keyword associated with that argument. For example, the
command above could be written as follows:

X = getromsig addr O, upto $7FF, addrstep 2

In keyword notation, it is much clearer that this command would
gather the signature from ROM dtarting at address 0 and ending
at hexadecimal address 7FF, us nﬁ an address step of 2. The
mask argument was not needed in the keyword notatlon because
the default value of FFFFFFFF was used instead. Keyword
notation is usualy preferred because it is easier to read and it
provides better documentation for users who have not written
the programs. Keyword notation also alows default values to
be used with optional arguments. And, keyword notation
reduces the chances of making errors, which could be caused b
mixing up the order of argument values required by position
notation.

DATA TYPES, VARIABLES, AND EXPRESSIONS 3.2.

Data

3-38

This section discusses the kinds of data that TL/l can
manipulate, the operators and functions that operate on data, and
how simple variables and arrays are both declared and used.
This section summarizes information presented in Section 2 of
the TL/I Reference Manual.

Types 3.2.1.

TL/I supports three kinds of data: integer numbers (data type:
numeric), floating-point numbers (data type: floating), and
strings (data type: string). Integer numbers in TL/l are 32-bit
positive integers which have values from O through
4,294,967,295 (base 10) or from 0 through FFFFFFFF (base
16). Floating-point numbers use the |IEEE standard for double-
precision floating-point numbers, except that Infinity and NaN
(Not a Number) are not supported. Strings in TL/lI are
sr?quences which contain from 0 through 255 ASCII (8-bit)
characters

Numeric vaues may be written in ether hexadecimd or decimd
notation. Hexadecima numeric congtants must be prefixed with
a “$" character. The hexadecima characters A through F must
adways be written in upper-case. For example, the decima
number 43 could be expressed as any of the following:

$2B (hexadecimal)
43 (decimdl)

String congtants are written as a sequence of characters placed
between double quotes:

. is a string containing no characters.
“abc” is a three-character tring.

ASCII characters which do not have a printable representation in
srings can be placed in strings by using backdash escapes:

\' is the gtring quote character.

\nl is the newline character (defines the end of a
line and does not necessrily include a line
feed).

N\ is the backdash character itsdlf.

\HH is the ASCII character corresponding to the

two-digit hex number HH.

Variables 3.2.2.

A TL/I variable is characterized by:

. Name - an identifier by which the variadés vdue is
known. See Section 2 of the TLII Reference Manual for
information on legd varigble names.

® Type - numeic, dring, or floaing.

3-39

3-40

® Value - an initid vdue ether a number (floating or
numeric) or sring, depending upon the varigble's type. A
variable has no vaue until one has been assgned, which is
discussed in a subsequent paragraph.

* Scope - locd, globd, or persgent. A vaiable is defined
to be ether vaid only within an invocation block (locd
scope) or vdid both within an invocation and outsde it
(global or persstent scope). A locd variable is accessible
only in the block in which it is defined. For more
information on blocks, see Section 3.3 of this manud and
the sections in the TL/I Reference Manual covering the
program, function, handle, and exercise commands. A
globd variable is accessible in any block that contains a
declare global statement for that varidble. Likewise, a
persstent variable is accessble in any block that contains a
declare persistent statement for that variable.

Once a varidble is created, its name and type are fixed-only the
vaue may be changed. The value of a varidble is accessed by
mentioning the variable in an expresson such as

print beta

A vaidble is assigned a new vaue by writing the variableé's
name to the left of an equas Sgn in an assgnment Satement:

beta = 4

The variable above, beta, is cdled a smple varigble: it holds
only one vdue a a time TL/l dso dlows arays of a sngle
data type. Arrays may have any number of subscripts, limited
only by avaldble memory. Individud aray dements are
referred to by comma-separated subscripts enclosed in square
brackets:

testvec{l] = SFEQ0
uutlocl[i, j]

si gname[testvec[i], uutloc [i, jII

O

Only individual array elements, like those shown in the
examples above, may be used in TL/1 assgnment Statements,
expressions, or as function arguments.

Variable Declarations

The declare statement declares the name, scope, array, type, and
default vaue for a sngle vaiable. For example, the following
declaration uses only one statement:

decl are gl obal string uut_name

TL/l dso dlows multiple declarations with a declaration block,
as shown with the following example:

decl are _
global nuneric array [0:9] intr_vec
string 'error message’ = "no error"

end declare

Variable declarations usng the declare statement may occur in
program, function, handler, and exerciser blocks.

A loca varigble that is not an array does not have to be declared;
amply assgning a vaue to it is enough to implicitly dedare the
vaiadle. The type of the variable is taken to be the type of the
expresson assgned to it.

The table bdow shows how the different variable attributes
dafect vaid variable declarations:

Implicit declaration Default value

Variable Scope allowed? allowed?

ample local yes yes
global no yes
perssent no yes

array locd no no
global no no
persistent N/A* N/A*

* persstent variables may not be arrays.

3-41

Assigning Default Values to Variables

A default vdue may be given to a ample variddle in a dedae
datement by following the varidble name with an equas dgn
and avaue

decl are nuneric nr_of_pins = 24

decl are
string start-nmsg = "Beginning test"
nuneric pin-mask = $DFEQ
floating Vcc = 5.0

end declare

Remember that default values may not be assgned to arrays.

Persistent Variables

3-42

TL/l vaiable declarations can use an optiond persstent
atribute, usng the same syntax apai)licable to globa variables.
For example, the following are alowable persgent variadle
declarations:

declare persistent nuneric n
decl are persistent string sl

decl are
persistent floating f
end declare

Perggtent variables dlow TL/I programs to preserve the values
of certain variables across the execution of severa programs.
This is especidly useful for programs executed during GH,
which otherwise would have no convenient way of
communicating variable values among various stimulus

programs.

Persgtent TL/l variables are smilar to TL/l globd variables,
except that ther vaues survive execution. However, they ae
not in the same “name space’ as globa variables, so that in the
falowing TL/I program, the two ingances of the foo variable
actudly refer to digtinct variaoles:

program prog
declare persistent numeric foo
function xyzzy
declare global nuneric foo
end function
end program

Persgtent variables have the same property as globa variables in
that synonymous declarations in different functions and
programs refer to the same vaiable for example, in the

program:
program prog2
declare persistent nuneric foo
function Xyzzy
declare persistent nuneric foo
end function
end program
Both declarations of foo refer to the same variable.

Persgent variables may have type numeric, dring, or floating.
They may not be declared as arrays. Also, arguments to the
enclosing block (for example, to a function or program) may not
be declared as persstent variables.

The modd for implementation of persstent variables conssts of
two entities: the persstent variable set and a set of locd copiesin
the currently running TL/I program, and a number of operations
for propagating dements of one st to the other. This modd is
is shown in Figure 3 1.

3-43

CURRENTLY RUNNING TL/4 PROGRAM

DECLARATION
LOCAL COPIES ASSIGNMENT PERSISTENT VARIABLE SET
INPUT
>
pvl "fooi”
pv1 *foot” pv2 "foo2"
pv3 "foo3"
DECLARATION
g

Figure 3-11: Persistent Variables Model

3-44

Certain TL/I operations retrieve persistent variables from the
persistent variable set, while other operations write them to the
ersistent variable set. The set of local copies known by the
L/Elabylorogram is also called the currently active set of persistent
variables.

When a TL/l declaration for a persistent variable is processed,

the persistent variable set is first checked to see if it contains the

declared variable. If it does, the vaue is retrieved and used to
set the local copy. If not, the value held by any previously
declared local copy isused. If thereis no local copy, then a
default value is assigned. Finaly, after the value of the local
copy is established, the variable and its value are written back to
the persistent variable set. If the set did not previoudy contain

this variable, the write operation adds it to the set.

When a TL/I operation occurs that assigns a value to a persistent
variable (e.g., Input, assignment, for loop variable updating),
the local copy is first updated to the new vaue. Next, the
variable and its value are written to the persistent variable set. If
the set did not previously contain this variable, the write
operation adds it to the set. In general, the persistent variable set

ready contains the variable, since it must have been declared
prior to use in the TL/I program. However, the persistent
variable set contents may have been reset in the interim as
described in the following paragraphs.

When a TL/l operation occurs that references the value of a
persistent variable ?for example, usage of the value in an
expression), only the local copy is checked. The contents of the
persistent variable set are not used. In particular, if the
persistent variable set does not contain the referenced variable,
the reference does not add the variable back to the set.

The values of dl currently active persistent variables can be set
to zero values with the clearpersvars command. clearpersvars
sets al currently active numeric persistent variables to 0, dl
currently active floating persistent variables to 0, and all
currently active string persistent variables to “” (the empty
string). Currently active means the set of persistent variables
known so far by the TL/I program executing the clearpersvars
command (the set of local copies).

3-45

3-46

The currently active set does not include persistent variables with
declarations in the current program that have not been processed,
nor does it include persistent variables installed in the persistent
variable set by some previously executed TL/I program, but
unknown by the current program. This feature of the
clearpersvars command is essential to hide non-volatile
information in the persistent variable set which is not relevant to
the current application.

For example:

program prog3
declare persistent nuneric pnl
declare persistent floating pfl
decl are persistent string psi

¢learpersvars ()

I pnl is now O, pfl is now 0.0, and psl is
! now "* in both the local copy set and the
| persistent variable set.

I all other variables in the persistent

I variable set are unchanged.

end program

The set of persistent variables always starts out empty each time
the 9100A/9105A is turned on, and accumulates from that point.
Resetting the 9100A/9105A with the front panel RESET key
does not affect the set.

The persistent variable set is explicitly emptied with the TL/I
resetpersvars command. resetpersvars resets the persistent
varigble set to its initid empty condition. An important feature
of this command is that even though the persistent variable set is
emptied, the set of local copies active in a currently running TL/I

program retain their values locally to the execution of the
program. Persistent variables which receive a value or are
declared after resetting the set are added to the persistent variable

set as shown in Figure 3-12,

program prog4

I funcl = establishes persistent variables
I pvl...pv4, and assigns them initia
I' val ues

function func
decl are
persistent string pv
persistent string pv2
persistent string pv3
persistent string pvd = "foo4"
end declare

pvl = "fool"
pv2 = "foo2"
pv3 = "foo3"

end function

|

I func2 - resets the persistent variable set,
I then assigns a new value to pv2 and

I accesses the value of pv3

I the former operation will add pv2 back to
I the persistent variable set, while the

I latter operation will not add pv3.

function func2
decl are
persistent string pvl
persistent string pv2
persistent string pv3
persistent string pvd
end declare

resetpersvars() ! reset the set of
I persistent variables

pv2 = pv3
end function

(Continued on next page)

Figure 3-1 2: Persistent Variable Set Program Example

3-47

L

I func3 - declares pvl again for the first
I time since resetting the persistent

| variable set, thus adding it back to

I the set.

function func3
declare
persistent string pvl
end declare
end function

funcl()
func2 ()
func3 ()

end program

Figure 3- 2: Persistent Variable Set Program Example (cont)

3-48

For the above program, the following describes the sequence of
operations on the set of persistent variables during execution of
the program (assuming that the set of persistent variablesis
initially empty):

1

During the processing of the declarations for
function func 1, the persistent variables pvl, pv2,
pv3, and pv4 are added to the persistent variable
set. By the time funcl returns, assignment
statements to pvl, pv2, and pv3 have set their
values to “fool”, “foo2’, and “foo3’,
respectively, and pv4 has been set to “food” by
the default initializer in its declaration.

After executing the resetpersvars command in
func2, the persistent variable set is empty. Note
that even thougfh pvl through pv4 are declared in
func2, the declarations do not have the effect of
adding them back to the persistent variable s,
since their effect occurs before the resetpersvars
command is executed.

Again, note that even though pvl through pv4
are removed from the persistent variable set, they
retain their values in the currently running
program. Thus, the value of pvl is still “fool”,
pv2 1s“foo2’, etc. If no further operations are
performed on these variables, they disappear on
termination of the program.

After executing the assignment statement:

pv2=pv3

the variable pv2 is added back to the persistent
variable set, since a value was assigned to it.
pv3 was not added to the set, since referencing

the value of a variable formerly declared
persistent is not sufficient to add it to the set.
The value of pv2 is now “foo3”.

3-49

4. Since pvl is declared in func3, it is added back to
the set when the declaration is processed. The
value associated with pvl is sill “fool”

Thus, when the above program terminates, the persistent
variable set contains two variables, pvl and pv2, with values
“fool” and “foo3”, respectively.

It is important to note that the clearpersvars function writes new
values to the currently active set of persistent variables. The
effect of the following call to resetpersvars is negated by the
subsequent call to clearpersvars for al persistent variables

known to the currently active program (persistent variables pvl
through pv3):

pr ogr am prog5
decl are
persistent string pv
persistent string pv2
persistent string pv3
end declare

reset persvars ()
cl earpersvars ()
end program

The previous program has the effect of discarding all other
persistent variables, then setting the values of pvl, pv2, and pv3
to the empty string and installing them as the entire contents of
the persistent variable set.

The Assignment Statement

An assignment statement can have either of the forms below:

variable = expression
array[subscriptl, subscripts, subscriptn]
= expression

Values can be assigned only to individua array elements, not to
entire arrays.

3-50

(,3 Passing Arguments

Passing an argument to a program or function is another way of
assigning avaue to avariable. The function block uurtest is
defined below followed by an invocation (execute command) of
uuttest:

function wuuttest (addr)
declare nuneric addr

end function
execute uuttest addr $100

The addr argument for uuttest will be assigned the hexadecimal
value of 100 as part of the invocation process.

Operators 3.2.3.

The TL/I operators for string, numeric, and floating-point
values are explained in Section 2.4 of the 7L/l Reference
Manual; the order in which operators are applied (precedence) is
explained in Section 2.5 of the TLII Reference Manual. Many
of these o’oerar[ors will be familiar to those with experience using
any high-level language.

TL/I aso provides logical string operators. Certain functions for
the pod and the I/O modules require long sequences of bits
which may take on the values 0 (low), 1 (high), or X
(undefined). TL/I has provided operators which compute the
and, or, xor, and complement (cpl) of these strings. The least-
sgnificant bit of such strings is defined to occupy the right-most
place in the string. If two strings of unequal length are
combined using a logical operator, the shorter string is extended
to the left (high-order bit postions) with zeros. The operators
themselves produce values as shown in the following table:

3-51

A B AandB AorB AxorB cplA

0

0 0 0 0 0 1
1 0 1 1 1

0 X 0 X X l

l 0 0 1 1 0

1 1 1 1 0 0

X X X 1 X 0

X 0 0 X X X
| X 1 X X

X X X X X X

Expressions 3.2.4.

3-52

TL/l uses expressions to combine data values into new vaues.

These new vaues are usually assigned to variables or passed as
arguments to functions or programs. Expressions in TL/l are
composed of simple variables, array elements, constants,
function invocations, and operators. Some examples of

expressions are:

pi nnr a sinple variable
maskval |[j] an array elenent
read ($Fo) + 4 a function invocation

and addition

read addr $r0 - $10 a function invocation
and subtraction

300 a numeric constant

]*4a a nmultiplication
operation

2.5/1E-3 a floating-point division

| abel + "abc" a string concatenation

which adds the characters
abc to the end of the
string naned | abel

Math Functions 3.2.5.

TL/l provides a number of math functions for floating-point |

numbers:

Math Function TL/I Function
absolute value fabs
square root sqrt
exponential pow
logarithm (base may be

specified) Ioﬁ
sne Si
inverse sne asin
cosine cos
inverse cosine acos
tangent tan
inverse tangent atan

In addition, the natural command provides built-in constants for

the transcendental numbers z and e.

System Functions 3.2.6.

The systime Function F
The systime function returns the number of seconds since
00:00:00 on the arhitrary date of January 1, 1980. The readdate i
function converts the number returned by systime into a usable

gtring for the current date. The readtime function converts the
numboer returned by systime into a usable string for the current
time. i

3-53

The systime function is al'so useful in timing the duration of
events; the difference between the values returned by two
invocations of systime is the number of seconds required to
perform an action:

start = systinme ()

execute test23 ()

print using "the test took #####@
seconds" systime() = start

The sysdata and sysaddr Functions

These functions are primarily for use with exercisers and
handlers invoked from the operator’'s keypad. Operations
directed to the pod (such as read, write, and writefill) set the
values returned by sysaddr and sysdata. The exact vaues will
depend upon the circumstances, sysdata and sysaddr together
are meant to provide an easy-to-use feature that reduces the data
entry load on the operator.

PROGRAM STRUCTURE AND FLOW CONTROL 3.3.

Block Structure of TLI/I 3.3.1.

3-54

Every TL/l program begins with a program statement and
terminates with an end program statement. These two
statements delimit the program definition block, which encloses
al the declarations and executable statements of the program. A
program is the smallest unit of TL/l code that may be executed
(or invoked) using the EXEC key on the operator’ s keypad.
Here isasimple TL/l program:

program echo(nessage)
declare string nessage = "Hello, world!"
n = open device "/tern2", as "output"
print nessage
close channel n

end program

The program consists of the name, echo, a declaration and
default value for the argument message, and three additiona
statements. The first opens a channel to the monitor, the second
prr]i ntselthe message on the channel, and the third closes the
channel.

TL/l is a block-structured language. Blocks serve to group:

. Statements - In the echo program, only the statements
defined in the echo program block will be executed.

* Vaiables - The variables that are declared inside echo are
only known to that program (except for globa variables,
which will be covered later). When echo finishes
execution, the storage used for variables is reused for other
PUrpoSes.

Every block consists of a statement that starts the block (such as
program, declare, or if) and another statement that ends the
block (such as end program, end declare, or end if). A
summary of the characteristics of TL/1 blocks is shown in
Figure 3-13.

3-55

Block Type Name Contain How Is /t Invoked? Can Variables
Function Be Local to
Definitions? Block Only?
program I1-10 characters, yes EXEC key, execute yes
valid file name statement, or
invocation in
expression
function I-255 characters no execute statement yes
or invocation in
expression
handler fault name no faulr statement yes
1-255 characters
exerciser fault name no LOOPkey yes
1-255 characters
declare none no declare statement N/A
if none no if statement no
loop for none no loop statement loop index
only
loop while none no loop statement no
loop until none no loop statement no

3-56

Figure 3-1 3: TL/1 Block Types

The program, function, handler, and exerciser blocks share the
following characteristics:

A name - Names for programs can be 1 to 10 characters
long. Names for function, handler, and exerciser blocks
can be 1 to 255 characters long.

An argument list- The argument list tells which values
each block expects to receive when it begins execution.
The actual declaration of the argument variables gives the
type and may specify a default value, if it is appropriate.
Vaiable declarations - Any variables used by a block
should be declared before use. While this is optiona for
local variables (variables known only inside the block
being defined), it is required for global and persistent
variables.

TL/I statements - The statements define the actions to be
performed when the program is executed.

The program block is the principal building block for TL/I. It
contans.

A program statement, which gives a name to the program
and lists the program arguments. The name of the
program must match the name of the file containing the
TL/l program.

Declarations for any local or globa variables.

Any function definition blocks, fault condition handler

definition blocks, or fault condition exerciser definition
blocks.

TL/I statements that make up the program.

An end program statement, which defines the end of the
program block.

Figure 3-14 shows a skeleton of a program, which contains a
function definition block a fault condition handler definition
block and a fault condition exerciser definition block. The
example program shows that a program’s variables are declared

3-57

program exanple (start, finish)
decl are
numeric start = 0
nuneric finish = 0
floating frequency = 60.0
global string active-space
nuneric ny-variable
end declare
function do-test (addr, range)
declare nuneric addr
declare nuneric range
declare global string active-space
| executable statenments for function

end do test

handl e-some fault (addr)
decl are-numeric addr
declare global string active-space
I executable statenents for handler

end sone fault
exercise-a-fault (addr)
declare nuneric addr
declare global string active-space
I executable statenents for exerciser

end a fault
I Executable statements for program

end program

Figure 3- 4. Program Structure Example

3-58

firgt, then functions are defined, then fault condition handlers or
fault condition exercisers are defined, and finally the executable
statements for the program are listed. The executable statements
for each function, handler, or exerciser are included within each
respective definition block.

How Programs and Functions Are Invoked 3.3.2.

TL/l programs can be invoked from the operator's keypad or
they can be caled from another TL/I program:

* A program is invoked from the operator’s keypad by

pressing the EXEC key and then providing the name of the
UUT directory and the name of the program.

¢ A program is called from another program by using the
execute statement:

execute exanple (0, 1000)

The statement above calls the program named example

O using 0 and 1000 as arguments.
* A program will be called when its name appearsin an
expression:
total = times (plus (a, b), ninus (c, d)) i

The statement above calls the user-defined programs times,
plus, and minus.

Functions are also called using the execute statement or by
placing the function name in an expression.

When a program is invoked, it is first loaded from a disk file if it
is not already in memory from a previous invocation; from then
on, the 9100A/9105A processes programs and functions in the
same way, as is shown on the next page.

1. Storageisallocated for the local variables of the
newly created program or function.

3-59

2. Argument values from the calling statement are
copied to the corresponding newly created local
variables, overriding the default values of the called
block. Any variables that do not appear in the caling
statement are assigned default values.

3. Execution of the program or function begins with the
first executable statement in the block.

Scope Rules for Programs and Functions 3.3.3.

3-60

A TL/I program name appears both in the program statement
and as the name of the file in which the program is stored (this

file name appears in a 9100A/9105A directory). When the
EXEC key Is pressed or when an execute statement is
performed, the search for the file containing the named TL/I

program follows this order:

1. USERDISK current UUT directory
2. USERDISK current pod directory
3. USERDISK program library directory

¢ |f E-disk is loaded:

E-disk current UUT directory

E-disk current pod directory
USERDISK current UUT directory
USERDISK current pod directory
USERDISK program library directory

Sl Seon

If the program isn't found in any of these directories, an error
occurs.

The scope of a program name depends upon the directory in
which the specified program is placed:

* A program file in the program library has a scope
extending over al pod descriptions and UUT directories.

But if a program of the same name is placed in a pod
description or UUT directory and the EXEC key or an
execute statement is performed while testing that UUT or
using that pod, the eac?rogram in the program library will not
be executed; instead, the program in the pod description or
UUT di rectory will be executed.

* Aprogram filein apod description will be found only

when that particular pod is being used. But a program of
the same name in a UUT directory will be found before the
program in the pod description when that particular UUT

directory is the current directory.

® A program filein a UUT directory will be found only
when that particular UUT directory is the current directory.

* The scope of afunction name extends throughout the

program block in which the function is defined. The
function cannot be caled from another program block.

Passing Arguments 3.3.4.

TL/l provides a convenient method for passing variable values
into program, function, handler, and exerciser blocks. These
variables are called arguments; any necessary argument names
and argument valuesaﬁ pear in the statement that invokes the
block. For example, the block below requires two numeric
arguments, start and finish:

program test-uut (start, finish)
decl are
nuneric start = 0
nuneric finish
end declare

The program test-uut could be called using any of the following
statements

execute test _uut finish 54, start 10

3-61

execute test-uut finish 15
execute test-uut (40, 50)

The first two execute statements use keyword notation; the name
of the argument is followed by the vaue to be assigned to it.

The third execute statement uses positional notation; in this
case, al arguments must be supplied and they must be supplied
in the order given by the program statement.

The arguments supplied to a program, function, handler, or
exerciser must be ssimple numeric or string values-arrays
cannot be passed as arguments. When the block is invoked, the

values of the arguments from the calling statement are copied to

the area of memory set aside for local variablesin the block
being invoked.

Returning Values from Programs and
Functions 3.3.5.

3-62

A program or function completes its work by executing either an
implied or an explicit return. At this point, al loca variables

disappear along with al other information about the terminated
program or function. The return may be implicit due to an
Implied return statement (which returns nothing) at theend
statement that terminates every TL/I program and function. An
explicit return uses a return statement. It can either return no
value or a single numeric, string, or floating-point value (a
return cannot return an array of values). A program or function
may contain more than one return statement, but all return
statements in a program or function must return the same type of
object: no value, anumeric value, afloating-point value, or a
string value.

To use a returned value, you must use it in an expression. For

example, if afunction returns a value, it can be assigned to the
variable X:

x = a-function (3, 4

When a program or function is invoked from an expression, an
error will be reported if the program or function does not return
avaue or if it returns a vaue of the wrong type. For example,
if afunction does not return a vaue, the following statement
would cause an error:

print a-function (3, 4) + 5

Scope Rules for Variables 3.3.6.

Figure 3-10 aso shows how information can be passed through
both arguments and globa or perssent variables. The scope
rules of TL/I define which variables are known inside
programs, functions, handlers, and exercisers. The scope rules
ae ample

A vaiable that is an argument to a block is vigble only
indde the block. The variables start and finish in
Figure 3-10 are arguments in the example program, as are
theaddr and range argumentsin the do-test function.

A vaiable that is not explicitly declared as globd or
persgent is aloca variable. This means that my-variable
is accessble only to the executable statements for the
program example, not to the function do-test nor to the
hendler some_fault nor to the exerciser a_fault. A loca
vaiadle is accessble only to the block in which it is
declared, and not to any nested blocks.

A variable that is used in a block, but does not appear in a
declare datement, is a locd varidble and is vishle only
indde that block.

A varidble that is declared globd in a declare satement is
visble in every block that dso contains a globa declaration
for the same variable.

A variable that is declared persstent in a declare statement
is vidgble in every block that dso contans a persgent
declaration for the same varigble.

3-63

Globa variables exig from the time the EXEC key on the
operator keypad is pressed until the time a different TL/I
program is run. Pressng the REPEAT key, which re-runs
the program, permits globd variables to retain their vaues.

If some function a cdls another function b, the loca variadles in
function a retain thar vaues when b terminates, so that a can
continue its work. But the locd variables in b disappear when b
terminates, just as the locd variables in a disgppear when it
returns to its cdler.

Conditional Flow of Control 3.3.7.

TL/I uses block gtructuring to organize if and loop Statements.
Both are conditional statements; refer to tion 2.4,
“Conditionad Expressions” of the TL/l Reference Manual for
more information on formats for conditiond expressons.

If Blocks

3-64

The if statement is used to sdlect aternative courses of action
based upon one or more conditions. The action of the if
datement is to try dl of the dternative conditions (condition.,
conditions, . . ., condition.) in order until one of the conditions
evduaes to true (a non-zero vaue). If one of the conditions is
true, then the corresponding action is executed. If none of the
conditions is true and an dse cdause is present, the ese action is
executed. The actions themsdves can be any lig of TL/I
gatements, including other if statements.

if <condi tion+ then
<actioni>

else if <conditionz> then
<actionz>

else if <condition& then
g <acti on&
el se

_<aCt 10Nelse>
end if

The block terminator end jf can also be written as endif for

comloatibility with BASIC, but this usage is not the preferred
TL/l form.

Simple If Statements

Where you need only a single condition, with no else clause, a
sri]m?Ier form of the if statement can be used. This statement has
the form:

if <condition> then <statementi>\<statement:>\

The statements, statement:, statement., and so on, are executed
only if the condition evaluates to true.

A Word about Compound Conditions

TL/lI aways evaluates conditiona expressions completely. This
is usually not important but does make a difference in the
following example;

if (a <> 0 and (b/a <> 3) then .
The problem is that the subexpression b/a will be evaluated
whether or not a is equal to zero, which can result in a divide-
by-zero error. This kind of test must be converted into two if
statements as shown below:

if a <>0thenif b/la <> 3 then . . .

.

3-65

Loop Blocks

3- 66

The loop block is used to group statements which are to be
executed repeatedly. This looping can proceed while some
condition is true, or until some condition becomes true, or for
some sequence of numeric vaues, or indefinitely.

The loop while block has the form:

loop while <condition>
<action>
end |oop

The effect is to repeatedly execute the action within the block
delimited by the loop while and end loop statements as long as
the condition is true The condition is tested before any
datements in the block are executed. The action may be any list
of TL/I statements including other loop blocks.

The loop until block has the form:

loop wuntil <condition>
<action>
end | oop

The effect is to repeatedly execute the action within the block
delimited by the loop until and end loop statements as long as the
condition is fase. The condition is tested before any statements
in the block are executed.

The loop for block has the form:

| oop for <varindex> = <expri> to <exprz>
[step <exprs>]
<action>
end |oop

The step expression is optional and assumed to be 1 if omitted.
The loop index varidble (varmeex) begins with the initid vaue,
expr:; while the index varidble is less than expr:, the statements
ingde the loop block are executed. Following each iteration of
the loop, the value of expn (which defaults to 1) is added to the
index varigble. The end loop Statement can be replaced by the
keyword next, which is compatible with BASIC, however, this
is not the preferred TL/1 form,

Omitting a controlling condition such as while, until, or for
creates an endless loop:

| oop
<action>
end

| oop

The action between loop and end loop is executed until some
externd event (such as a fault condition) causes control to be
transferred outside the loop.

INPUT, OUTPUT, AND FILE COMMANDS 3.4.

This section provides an overview of how to use the TL/1 input
and output commands.

1.

The open command peforms the initidization
required to dlow your program to read from or write
to the device or file named in the device argument of
the command. The open command returns a channd
number which may be assgned to any numeric
variable you specify. This channe number is used in
subsequent print and input commands to identify the
device to be used. Up to 16 channels may be open at
any given time.

The print and input commands transfer information
between the TL/1 program and the device. The
channd number returned by open is used to identify
the device to be used. Severa devices can be open at
once.

The close command breaks the association between
the channel number and the device. Once a close has
been peformed, no further operatiions can be
peformed on the device unless ancther open
command is performed for it.

3-67

File and Device Types 3.4.1.

There are severa kinds of devices which may be used from
TL/1. These following devices produce and accept the printable
ASCII data that the I/O commands are designed to handle:

o Operator's Interface « named "fterm1". The name refers to
the operator's display on output and the operator's keypad
on input.

. Programmer’s Interface « named "/term2". The name

refers to the monitor on output and the programmer’s
keyboard on input.

* Windows - named "/term1/win" for a window on the
operator’s display and "fterm2/win" (or “/win”) for a
window on the monitor. Additional arguments are
provided in the open command to set window parameters.

* RS232 Ports - named “/portl" and "/port2". Additional
arguments are provided in the open command to control
the communication through these ports.

. Disk Text Files- named using the system’ sfile naming
conventions (see Sections 2.8 and 3.4.6 of this manual).

. |IEEE-488 Interface and Devices - named “fieee" oOr
"fieee/address list”. The names refer to either the IEEE-
488 fl nterface, or to a group of devices attached to the
interface.

Opening Devices and Files 3.4.2.

The open command makes a device or disk file accessible to
your TL/1 program. The open command accepts several
arguments, al optional, giving information about the device or
file to be used; open returns a channel number which serves to
identify the device or file in subsequent 1/O function calls.

3-68

®

The device argument gives the name of the device or file to be
opened. The as agument (“input”, “output’, “updae’, or
“append”) G?ives the direction of the I/O trandfers. The mode
argument tells whether 1/O is done a line a a time (“buffered’) or
a character a atime (“unbuffered”).

All arguments to the open command are optiond. The gpplicable
defaults provided are documented in the open command section
of the TL/I Reference Manual.

Buffered and Unbuffered Channels 3.4.3.

The mode agument of the open command governs severd
aspects of how the device atached to the channd is treated.
Most of the argument’s vaues apply to the operator’'s interface,
programmer’s interface, and the RS-232 ports.

Buffered Channels

Buffered mode is appropriate for operator input-the editing
features are dmost essentiad for manua data entry. Buffered
mode input is aso ussful with disk files that have fixed data
formats compatible with the input using command (which cannot
be used in unbuffered mode). Buffered channds have the
following characteridtics:

. Record sze: Input and output occur in units of lines rather
than characters. An input command, for example, will
wat for input until a lineterminating character (such as
Return on the keyboard, or a newline character on the RS-
232 port) is entered.

. Input data types. The input command reads numbers and
multi-character gtrings in buffered mode, rather than the
single-character drings read in unbuffered mode,

* Newline chaacter: Newline characters printed on a
buffered RS-232 channel are converted ether to a sngle
cariage return, or to a carriage-return/linefeed sequence,
as sdlected by the SETUP MENU key.

3-69

Unbuffered Channels

Unbuffered channels are most useful when dealing with inter-
machine communications, specia operator interface functions (in
which the format of the operator’s or programmer’ s display
must be very carefully controlled), or when the input format is
too complex for input using.

Unbuffered channels have the following characteristics:

* Record size: Input and output occur in units of characters.
An input command will read data as it is entered rather than
waiting for a line-terminating character.

¢ Input data types. The input command places a one-
character string into each of the string variablesin its
argument list; numeric and floating-point variables are not

permitted. The input using command is illegal for
unbuffered channels.

® Newline character: The newline character on an unbuffered
channel may only be a carriage return.

Printing Newlines on Output Channels

3-70

The print command will always print a termination character (the
default is a carriage return (CR)SJ after the last expression in its
argument list. The print using command prints a carriage return
only when a newline character appears in its format string. (See
the print using command in the TLII Reference Manual for
more information on format strings.)

oo~

<

A carriage return may be transformed into a carriage-
return/linefeed (CRLF) sequence when printing to abuffered
RS-232 port if the newline character in the SETUP MENU has
been set to CRLF. The possible combinations are sumrnarized
in the following table:

Command Channd Mode Newline Character
CR CRLF
print buffered CR CRLF
unbuffered CR CR
print usjn? (with buffered CR CRLF
\nl inthe format) unbuffered CR CR
print using (with buffered Enoneg Enone;
no \nl in the format) unbuffered none none
Commands 3.4.4.

The input command is used to read all datain TL/1. The simple
form of input reads only decimal numeric data, floating-point
data, and unformatted string data. The format strings used with
input using are designed to handle the most common numeric,
floating, and string Input requirements, and format strings are
particularly suited for machine-generated, fixed-format data files
(such as CAD databases). When thisisn't enough, the input
command can read entire lines of input into string variables,
which may be processed using the string functions of TL/1.

The print command is used to output data in TL/1. The smple
form of print prints strings “as is’, numeric numbers in decimal
format, and floating-point numbersin scientific format. The
print using command uses a format string to print numeric
numbers in hexadecimal, decimal, or binary format; floating-
point numbers in scientific or fixed-point format; and strings
using fixed-width fields.

3-71

See the print using and the input using commands in the TL/1
Reference Manual for more inforrnation on format strings.

When no on clause appears, the print and input commands use
the first channel that was opened with the appropriate direction
§“input” or “update” for input; “update’, “append’, or “output”
or print). For example, the following program reads a line
from the operator’ s keypad and echoes it on the operator’s

display:

program exanpl e
declare string line
chan = open device "/termi"
input line
print line
cl ose channel chan
end exanple

The poll command returns /O status information about devices
or files accessible to a TL/1 program via an open channel. Most
of this information is useful only for devices, but the “input”

condition will also tell your program whether or not the end of a
disk input file has been reached. To avoid an I/O error, your
programs should make sure that a poll for an “input” condition
on the input channel returns a non-zero value before using the
input command.

The delete command is used to remove text files from a disk.
The delete command cannot be used to remove directories or
non-text files,

Windows 3.4.5.

3-72

The 9100A/9105A uses a window manager to manage all
displays on both the operator’s display and the monitor. A
window manager alows the screen to be thought of a series of
rectangular “screens’ on the physical screen. For example,
when using the programmin? interface, there is an info window
that can be placed on top of the display window. The types of

things you might want to do in a window are to display textual

information, to display UUT pictures, to prompt for operator
action, or to build menu-driven interfaces.

G

Each window is opened and closed using the TL/1 open and
close commands. This alows norma print and input to be done
on windows just as it is done on any other display device.
Windows are permitted to overlap each other. What is displayed
IS determined by the order in which the windows were created.
A new window is always on top of al the other windows. An
existing window may be moved to the front or the back using
the winctl command. The winctl command also permits making
a window invisible by “hiding” it, and making an invisble
window visible by “unhiding” it.

The location of the upper, left-hand corner of a window is
specified by xorg and yorg (see Figure 3-15). The size of a
window is eﬁ:)ecified by xdim and ydim. The size of the object to
be displayed in the window is controlled by xscale and yscale.
All references to locations inside a window and sizes of objects
displayed in a window are made relative to the full-scale
coordinates specified. For example, if xscale and yscale are
both 1000, the center of the window is (500,500). If the object
size is larger than the window, only part of the object will be
visble a any given time.

The 9100A/9105A monitor displays 24 rows with 80 characters
per row. The operator’s screen displays 3 rows with 42
characters per row. Therefore, a window that exactly covered
the monitor would use (0,0) for xorg-yorg and (80,24) for
xdim-ydim. If you wish to specify locations in a window using
character offsets from the origin of the window, you can set
xscale = xdim and yscale = ydim. In this case, since the
\(Azlti(r)]dlof\z,\; is of size (80,24), the center of the window would be

3-73

OBJECT

©00 e . l)) gxsc_a:Ie,O)

(xorg, yorg) WINDOW

r Y

(xscale/2, yscale/2)

I

| |
| |
I |
II ydim +/ :
| |
| |
| |
| |

v

| xdim —»|

(0, yscale) (xscale, yscale)

Figure 3-15: Window Coordinate Systems

3-74

O

Disk

All normal print and input commands can operate on a window.

Using an input command with a window device open in update

or read mode will take input from the programmer’s keyboard
(in the case of a window on the monitor) or from the operator’s
keyﬁad (in the case of awindow on the operator’s display).
Each window is an ANSI termina with all of the escape
sequences and control codes active as defined in Appendix B.

The TL/1 command below shows an example of an open
command used to create a window on the monitor at origin
(20,6) with a dimension of 40 horizontal characters by 12 rows.

This window is to be centered on the monitor display. In
addition, the window is to have the title RESULTS centered in
the border at the top of the window. The full-scale coordinates
of objects to be displayed in the window are to be (1000,1000).

channel = open device "/win"“, xorg 20,yorg 6,
xdim 40, ydim 12, xscale 1000, yscale 1000
border "RESULTS'

Pathnames in TL/1 3.4.6.

Pathnames are used to specify text files and I/O devices. Seridl

I/O devices have only a device name, such as "/term1". But disk
devices dlow directories and files to be embedded within them.

Files exist within directories, and each disk device contains at
least one directory.

A full pathname, which begins with a "/" character, is a disk
device name, followed by zero or more directory names,
followed by the file name. The different components of the
pathname are separated by "/* characters. For example:

/hdr/abc/test4

A relative pathname begins without a "/* character and consists
of zero or more directory names and ends with the file name.
The different components of the pathname are separated by "/
characters. For example:

abc/testd

A full pathname uniquely identifies afile, but a relative pathname
refers to the current directory. For most TL/1 programs started
from the operator's interface, the current directory is a UUT
directory. But this may not be true when a TL/1 program is run
under the TL/1 debugger. Therefore, use relaive pathnames in
open and delete functions with care. In most cases these
commands Will not cause problems, but using the debugger on

programs that use relative pathnames may cause inappropriate
filesto be placed in or removed from 9 1 00A/9 105A directories.

POD-RELATED COMMANDS 3.5.

3-76

The commands described in this section are used to
communicate between a TL/1 program and a pod attached to a
9100A/9105A system. Figure 3-16 provides a summary of the
avalable commands and a classification of their normal use.

The following sections provide an overview of how these
commands are used in TL/1 programs.

Category Commands Use
Pod Setup setspace, getspace, Selects UUT address space.
sysspace
podsetup Select pod error reporting.
sync Select pod sync generation.
readspecial, writespecial Interface to special pod operations.
Read or Write read Read from current UUT address
Memory or 1/0 space.
write, writefill Write to current UUT address space.
readblock, writeblock Copy data between UUT memory and
disk file.
Read or Write readstatus Read microprocessor status inputs.
Microprocessor
Interface writecontrol Write microprocessor control
Sgnds outputs.
Stimulus rotate, rampdata, Wiggle data signds.
Functions for toggledata
Signature
Anaysis rampaddr, toggleaddr Wiggle address signds.
togglecontrol Wiggle microprocessor control
signals.
Built-m testbus Test address, control, and data buses
Functional Test for drivability and tied lines.
Commands
pretestram Very fast pretest of RAM.
testramfast, testramfull RAM memory tests.
diagnoseram Post-process fault analysis for
custom RAM tests.
getromsig, testromfull ROM memory tests.
RUNUUT haltuut, runuut, waituut Control RUN UUT mode.
Mode

polluut

Determine if pod isin RUN UUT
mode.

Figure 3-1 6: Pod-Related Commands

3-77

Pod Setup Commands 3.5.1.

UUT Address Space Selection

3-78

Complex microprocessors provide several memory access
methods; these methods may include different data widths (8,

16, and 32 bits), different program privilege levels (user,
executive, supervisor, and kernel), and different memory
segments (code, data, stack, and so on). Some microprocessors
also support parallel 1/0 and memory address spaces, both
addressed by the microprocessor’s address signals. The
microprocessor's memory-interface signals are set to vaues

which depend upon the access method desired for each cycle.

Each possible setting of these control signals is called an address
space. The getspace, setspace, and sysspace commands tell the
9100A/9105A and the pod which address space should be used
during subsequent UUT read and write cycles.

Each microprocessor manufacturer uses different terminology
for the different address spaces supported by its
microprocessors, and microprocessors differ in the number and
kinds of address spaces that each provides. The documentation
for each pod and Appendix | of the TL/I Reference Manual list
the address spaces supported for each microprocessor. The
getspace command converts a readable description of the address
Space you want to use into a number used internally by
9100A/9105A software to describe the address space. Using the
80186 as an example, we can create two address space
descriptors as follows:

nor mal memwor d = getspace node "normal ", space
"menory", size "word"

dmai obyte = getspace node "dma", space "i/o"v,
si ze "byte"

G

The vaiable, normalmemword, will be assgned a number
corresponding to the 9100A/9105A internal encoding for a
normal (non-DMA), memory word access, while dmaiobyte will
be assigned a number corresponding to a DMA-mode, 1/O byte
access.

The numbers returned by getspace are used as arguments to the
setspace command, which actudly tdls the pod which address
gpace to use. For example, to read a word from memory and
then a byte from the DMA 1/O space of an 80186:

setspace space nor rmal nenwor d
firstmemword = read addr $1F0A
secondmemword = read addr $1FOC
setspace space dnaiobyte

i obyte = read addr sF

Notice that you only need to cal setspace when you want to
change address spaces;, once set, an address space selection
remains in force until ancther setspace command is used.

The number of the microprocessor address space currently in
use can be determined by using the sysspace command. This
command is normdly used in functions, handlers, or exercisers
which need to temporarily change address spaces. For example,
a handler which needs to read a word vector at location O in
68000 code space, without disturbing the current address space
sdection, could use the following steps:

oldspace = sysspace ()

newspace = getspace Spaceé "supporg",
Si ze "word"

setspace Space newspace

Once the operations requiring newspace have been completed,
the old address space can be restored by executing:

setspace space oldspace

3-79

Setting Pod Error Reporting and Sync Mode

The pod can detect and report a number of exception and error
conditions. The podsetup command alows you to sdectively
enable and disable different classes of eror reporting. For
example, pods will normdly report an eror if a forcing line
(such as the RESET input of a microprocessor) is asserted
during a UUT access cycle. But this error can be masked by
udng podsetup as follows

podsetup 'report forcing' Voff"
Notice that the report forcing argument contans a

charecter, therefore it must be surrounded by single quote
characters.

The pod sync mode is selected using the sync command. The
avalable sync modes are documented in the relevant pod
manud; al pods support a leasst ADDR and DATA sync modes:

sync device "/pod", node "addr"

sync device "/pod", node "data"

Interface to Special Pod Operations

3-80

Certan Pods have functions which cannot be accessed usng the

unctions of the 9100A/9105A. These specid functions
are a:cessed by reading and writing to locations, called specia
addresses, outside the norma UUT microprocessor address
range. The readspecial and writespecial commands access these
gpecid addresses s0 that the full functiondity of each pod is
avaladle.

Each pod manud fully documents any specid addresses, and the
side effects of reading from and writing to them. Use
readspecial and writespecial only when you know that the
normd 9100A/9105A commands cannot perform the specid
operation required. Incorrect use of readspecial and writespecial
can get the pod and the 9100A/9105A into inconsstent States,
requiring that the pod be reset to recover.

(‘\ Reading and Writing UUT Memory and 1O 3.5.2.

You need to sdlect an address space with the getspace and
setspace commands before accessng the UUT memory and 1/0
gpaces. All UUT memory accesses take place in the context of
some address space, which must be sdected before the UUT
memory access is atempted.

Reading and Writing a Single Location

The read and write commands provide the basc interface to the
UUT's memory and 1/0. The read command smply tdls the
pod to read the data at the location you specify and to return the

result. The write command tells the pod to write the data you
want a the address you specify. As noted in Section 3.51, the
setspace command selects the address space, after which read

and write actudly orm the UUT accesses. To increment a
byte at location 100 (hex) in UUT memory using the Z80 pod:

setspace space (getspace space "menory")
val = read addr $100
wite addr $100, data val + 1

Filling a Block of Memory

The writefill command can quickly fill ablock of memory with a
gngle vdue The interpretation of the width of the data vaue
(for example, byte or word) is taken from the address space
currently in use. The following gatements will set each 16-bit
word in the first 4K bytes (2K words) of a 68000-based UUT
user data memory to the value 8:

setspda;lce space (getspace space "usrdata", Size

"wor
witefill addr 0, upto $FFE, data 8

3-81

Likewise, the following statements will write a zero to each of
the I/O ports of an 8085:

setspace space (getspace space "i/o")
witefill addr 0, upto $FF,data O

Saving and Restoring UUT Memory Data

3-82

TL/1's readblock command reads a block of memory and creates
a Motorola-format (S-record) text file containing a copy of the
memory data. This file contains the memory data, the starting
address of the region copied, and the region’'s size. The
writeblock command reads a Motorola-format text file (as
created by readblock) and fills the UUT memory with the data
taken from the file. The starting address and size of the region
fill?j% |bykwriteblock are the same as when the file was created by
readblock.

One way to copy thefirst 16K bytes of an 8088-based UUT's
code space to disk is:

setspace space (getspace space "code")
readbl ock file "codestuff", format "motorola"
addr 0, upto 16383

This data could later be restored by executing:

setspace space (getspace space "code")
writeblock file "codestuff”, format "motorola™

Notice that writeblock omits the starting and ending addresses
since this information is recorded in the file named codestuff.

Reading and Writing Microprocessor
Interface Signals 3.5.3.

The readstatus command returns a pod-dependent number where
the hit settings reflect the current status of the pod and UUT

microprocessor. The status returned by readstatus is usualy a
mixture of information regarding the microprocessor's status

lines and other information about the pod itself. For example,

the 80286 pod returns information about the UUT power and

ground integrity, the health of the 80286 substrate bias
capacitor, along with the values of the eight microprocessor
status input lines. The status of PEREQ, for example, is
indicated In bit 5 (the 6th bit over from the right) of the number

returned by readstatus. To check whether or not the PEREQ
input is asserted, you could use the statements:

status = readstatus()
if (status and $20) then .

Because microprocessors differ greatly, each pod defines a
different set of readstatus bit values.

The purpose of the writecontrol command is to briefly set user-
writable control lines to specific logic levels, to check for
drivability, and for use in troubleshooting. Control lines are
defined as writable by the specific pod documentation. Again,
using the 80286 as an example, the writable control lines are:

Bit Control Line
2 PEACK-

1 HLDA

0 LOCK-

To briefly drive the LOCK line high, you could use:
witecontrol ctl 1

The exact length of time that any line is driven differs,
depending upon the kind of pod in use.

3-83

Stimulus Commands for Signature Analy sis 3.5.4.

3-84

The TL/1 commands described in this section are intended to be
used with signature analysis. These commands produce a
repeatable stimulus on a microprocessor's address, data, and
control buses.

The ramp commands generate patterns which resemble binary
counting (or “ramping up’). For example, the rampaddr
command, defined as:

ranpaddr addr a, mask m

performs reads beginning a address a and not m, where the bits
In a selected by corresponding one-bits in m are first set to zero.
Reads are then performed at successively higher addresses; the
addresses are ramped up, which issimgly inary counting in
which only the bits in a selected by one-bits in m are changed.
The result is that 2n reads are performed when » one-bits occur
in the mask m. The operation of rampdata is Similar.

The toggle commands also use a mask argument which selects
bits in the addr argument. For example:

toggl eaddr addr a, mask m

But the toggle commands simply invert the bits in a selected by
one-bits in m. The toggleaddr procedure is fairly smple:

loop for bit = (each one-bit in mask from
least~- to nost-significant)
read addr a
read addr (a xor bit)
end |oop

Notice that two reads are performed for each one-bit in the
mask. The toggledata and zogglecontrol cOmmands operate in a
similar fashion.

NOTE

It is not a good idea to use the built in functional test
commands (testbus, testramfast, testramfull, and
testromfull) to provide stimulus where signature

measurements will be made. These functional test

implementations may change, resulting in changes in
signatures obtained with these stimuli.

Data Bus Stimulus Commands

The rotate, rampdata, and toggledata commands produce
repeatable bit patterns to stimulate microprocessor data bus lines
by writing data patterns to an address specified by your TL/1
program.

* rotate writes a data pattern to the data bus, rotates the
pattern right by one hit position, and then writes it again.
The last data pattern written is the original data pattern
rotated left by one bit position.

®* rampdata Writes a data pattern you specify to the data
bus, and then ramps up only the data bits you've specified
in the mask argument. The number of writes performed is

2n where n is the number of bits set to one in the mask
argument.

® toggledata writes a data pattern you specify but
individually toggles each bit written as specified in the
mask argument. Two writes are performed for each bit set
to one in the mask argument.

Address Bus Stimulus Commands
The rampaddr and toggleaddr commands produce repeatable
patterns on the microprocessor’'s address busetéybperforming a

series of reads at different addresses as specified by your TL/1
program.

3-85

¢ rampaddr reads beginning a the address specified, and
ramps up only the address bits specified in the mask
argument. Therampaddr command performs2n reads,
where n is the number of bits set to one In mask.

* toggleaddr reads from the address specified and from the
address formed by complementing each address bit
corresponding to a one-bit in the mask argument. The
toggleaddr commandperforms two reads for each bit set to
onein mask.

Control Line Stimulus Commands

The togglecontrol command performs a series of writecontrols
(setting and resetting the microprocessor's writable control lines)
in a repeatable fashion. For each bit set to one in the mask
argument, two writecontrol operations will be performed, so that
each ctl-bit value matching a one-hit in the mask is driven both
high and low.

Built-in Functional Tests 3.5.5.

3-86

The 9100A/9105A built-in functional tests are designed to
provide fast, relidble implementations of commonly required
tests. These tests cover the mgor microprocessor buses, RAM
tests, and ROM tests.

Two common features of the functiona tests are:

¢ They return only a termination status (pass or fal) so that
these tests commonly appear in TL/1 programs as.

if testbus addr $1000 fails then .

®* They may raise anumber of fault conditions. The fault
conditionsraised are listed in Appendix G of theTL/1
Reference Manual.

@,

NOTE

These functional tests are not intended to
provide stimulus for fault isolation techniques,
such as GFI, which depend upon signature
analysis. Test implementations may change,
which would change learned UUT signatures
as well. Use the commands described in
Section 3.5.4 for signature analysis.

Testing the Microprocessor Buses

The testbus command peforms a comprehensve test of the
microprocessor address, data, and control buses. All three
buses are tested for drivability, and the address and data buses
are tested to ensure that no two address or data lines are tied
together. The addr argument for testbus should be a RAM
memory location that can be written to and read from without
causng bus access faults.

Testing RAM Memory

There ae three RAM teds avalable to TL/1 programs
pretestram, testramfast and testramfull. The table below and
Figure 3-17 compare their festures. Refer to the pretestram,
testramfast, and testramfull commandsinthe TL/1 Reference
Manual for more information on these tedts.

Test Type Coupling RAM Width Accesses per Cell

pretestram N/A any Only some
addresses are
checked
testramfast N/A any 5
testramfull disabled any 17
enabled 8 29
enabled 16 33
enabled 32 37

3-87

3-88

pretestram is a very fast pretest of RAM to find any smple
faults such as a totally dead memory chip, stuck address
lines, or stuck data lines.

testramfast isafast RAM test that performs only five

passes through memory. The testramfast command writes
pseudo-random data to memory. Since this data is
random, faults found in one invocation of testramfast may
not be found in another invocation.

testramfull is a deterministic RAM test; if the UUT

operates in the same way, every invocation of zestramfull
will find the same faults.

Fault Condition

testramfast

testramfull

Stuck cells.
Aliased cells.
Stuck data lines.
Stuck address lines.

Shorted address lines.

Always found.

Always found.

Multiple selection
decoder.

Dynamic coupling.

May be found.

"

Always found.

Shorted data lines.

Aliasing between bits
in same word.

May be found.

Always found for coupling
enabled, may be found for
coupling disabled.

Pattern-sensitive faults.

May be found.

Not found.

Refresh problems.

Always found if delay is sufficiently long and standby
reads do not mask the problem.

Figure 3-1 7: Fault Detection for RAM Tests

3-89

¢ testramfast will dways find suck or aliased cdls, stuck
address or data lines, and shorted address lines, but
testramfast may not find problems like multiple sdection
decoding, dynamic coupling, or aiasng between bits in a
sngle memory word.

® testramfast is more likdy to find some pattern-sendtive
faults then is testramfull: testramfast writes pseudo-
random data to memory, and al possible data patterns are
equdly likdy.

* testramfast isnot aslikely as testramfull to find problems
due to dectrica trandents related to writing al ones or dl
zeros to memory.

If you create your own customized RAM tedts, pretestram can be
used as a quick pretest. In addition, diagnoseram can be used to
provide diagnogtics and fault messages which are condgtent
with those of testramfast and testramfull.

Testing ROM Memory

3-90

The getromsig and testromfull commands are used together to
perform ROM memory tests. To read 64K bytes of ROM in a
16-bit wide address space use the following command:

sigval = getronsig addr $FF0000, upto SFFFFFE,
addrstep 2

The ggnature is returned and assgned to sigval. A mask
argument to getromsig can mask any bits of the ROM which
shouldn’'t be used.

The testromfull command first generates a ROM sgnature and
then compares it with the signature from a known-good ROM
(generated by getromsig). For example, the ROM signature
generated by the getromsig command in the previous paragraph
could then be used in the following command:

testronfull addr $FF0000, upto SFFFFFE,
addrstep 2, sig sigval

If the calculated and expected signatures don't match, zestromfull
will report a fault message on the operator’s display. As with all
signature-based schemes, there is a smal probability (in this
case, not more than 1 in 216) that a ROM containing incorrect
data will not be detected as faulty.

RUN UUT Mode 3.5.6.

The RUN UUT mode of 9100 pods allows the pod
microprocessor to emulate the target mlcrolorocessor executing
programs on the UUT. This mode is useful for executing pre-
written tests stored in a UUT ROM or to perform |n|t|al|zat|on of

UUT peripherals prior to a test. The commands related to RUN

UUT mode are:

* runuut, which puts the pod into RUN UUT mode.
® haltuur, which brings the pod out of RUN UUT mode.

* waituut, which suspends the TL/1 program until either a
time limit expires or the pod leaves RUN UUT mode.

* polluut, which returns 1 if the pod isin RUN UUT mode,
and O otherwise.

Placing a Pod in RUN UUT Mode

Before placing a pod in RUN UUT mode, make sure it is
properly set up. Your TL/1 program should:

* Peaform any podsetup operations required to initidlize the
pod. In particular, using overlay RAM will require special
Initialization.

¢ |f the compare command will be used, instruct the operator
to clip any 1/0 modules to the UUT, and then, use the
compare command to set up any 1/O modules.

3-91

The runuut command places a pod in RUN UUT mode. This
command has the following form in which start is the memory
address at which execution should begin and stop is a breskpoint
address:

runuut addr start, break stop

Not al pods support breskpoints. check the pod manud for
your microprocessor. For microprocessors that provide severa
modes of operation (for example, the 80286), check the pod
manud to find out how the microprocessor is initidized by
runuut.

Once the runuut command has been executed, the TL/1 program
can proceed to perform other tasks, but the only pod-related
commands which may be executed are waituut, hgltuut, and
polluut.

Removing a Pod from RUN UUT Mode

3-92

The pod itsdf will remain in RUN UUT mode until one of the
following occurs

* The pod encounters a breakpoint.

. An /O modulereports a data-compare-equal (DCE)
condition.

. A haltuut command is performed.
* A waituut command times out.

® The operator enters RESET or RUN UUT HALT from the
operator’s keypad.

If the pod is brought out of RUN UUT mode by a DCE
condition, the pod microprocessor will probably have executed a
number of indructions snce the DCE condition was actudly
detected.

or waituut. Any fault conditions encountered by the pod after
the runuur command is completed will be retained by the pod
and returned on the next command to the pod.

:-\\ You can expect that fault conditions may be generated by haltuut

/0 MODULE AND PROBE COMMANDS 3.6.

This section describes the TL/1 commands which control the use
of the I/O modules and the probe. An 1/0 module is normaly

used with a clip module that fits over an integrated circuit; this
permits measurement and stimulus access to al pins of the IC

component at once. The probe is a single-point device,
manipulated either by a machine (autoprober) or an operator, to
measure or stimulate any single node on a UUT. Figures 3- 18
and 3-19 summarize the commands used to control the I/O
modules and probe.

Naming UUT Components and Pins 3.6.1.

A reference designator is a UUT component name. A reference
designator begins with aletter (A to Z) or digit (0to9), and
congsts of from one to six letters, digits, underscores (), or
periods (.). Some valid reference designators are:

Reference
Designator Part

u2l IC 21
R1 Resistor 1
TP5 Test point 5

Reference designators are case-insensitive; "u43" and "U43"
refer to the same component.

3-93

Category Command Use

Configure 1/0 module counter Set counter mode.
or probe for
measurement edge Set active edges for external sync.
enable Set enable mode for external sync.
reset Reset to default mode.
stopcount Set number of enabled clock pulses
for measurement.
sync Set synchronization mode.
threshold Set input threshold levels.
Attach probe or 1/0 assign Resets connection data.
module to UUT assoc Associates a UUT part with an 1/0
module.
clip Prompt operator to clip 1/0 module.
connect Prompt operator to connect external
sync lines.
probe Prompt operator to place probe.
Perform measurement arm Arm measurement hardware.
with 1/0 module or probe
checkstatus Check if measurement complete.
readout Get data from measurement.
strobeciock Strobe internal clock for probe or
[/0 module.
Read measurement taken count Read count or frequency.
for one UUT component
pin level Read level history.
sig Read signature.
Probe stimulus pul ser Set probe pulser mode.
[/0 module stimulus clearoutputs Turn off output drivers.
clearpatt Discard output patterns
storepatt Set output patterns to be written.
writepatt Write output patterns to UUT.
writepin Latch or pulse level on single pin.
[/0 module word compare Set bit pattern to be compared with
recognition [/0 module input.
Get or set delay for getoffset Return current delay offset.
[/0 module or probe
setoffset Set new delay offset.

Figure 3-1 8: /O Module and Probe Commands, by Category

3-94

e g e - T

() Command /O Module Probe Sync Measurement Stimulus

arm : . any
assign : any
assoc : any
checkstatus . . "ext"

clearoutputs

clearpatt

clip . any

compare . any
connect . "ext"
. "ext"

count

counter . : any
SN edge : “ext"
CJ . “ext”
enable . "ext"
. "ext"

getoffset . . any

level . . any

probe : any

pulser . any

readout : . any

reset . . any

setoffset . . any

sig . . any

Figure 3-1 9: 1/O Module and Probe Commands, Alphabetized

3-95

Command /0 Module Probe Sync Measurement Stimulus

stopcount . “ext”

. “ext”
storepatt
strobeclock . “int”

“int”

sync . . any
threshold : . any
writcpatt . “int”
writepin D .

Figure 3-19: |/QO Module and Probe Commands, Alphabetized (cont)

3-96

N A reference pin argument tells which pin on a UUT component
Q should be used by a command. Legal reference pin vaues are
between 1 and 255. Different commands require that reference

pins be specified in one of two ways:

* Commands such as probe and connect, which tell the
operator to connect a 9100A/9105A device to a UUT
component, require that reference pins be specified as
XXXXXX-NNn; that is, as a reference designator followed by
a hyphen and one to three characters.

® Commands such as count, level, or sig may refer either to
UUT component pins or 9 100A/9105A device pins.

Example 1:

I uses a 9100A/9105A device pin
X = count device "/modlB", pin 22

Example 2:

I Uses a UUT conponent pin.

I The pin nunber is specified as a separate

! nuneric argunment i.e., wul7-2 is not correct
I syntax.

X = count device "ul7", pin 2

Naming 91 00A/9105A Devices 3.6.2.

Each 9100A/9105A system may have one pod, one probe, and
up to four I/O modules attached.

The name of the pod is the string:
“Ipod”

The name of the probe is the string:
“/probe”’

3-97

The 1/0 modules are named by the strings:

"fmod1"
"/mOdZ"
n/mod3n
"/fmod4"

Each 1/0O module can have either one or two clip modules
ingtalled. The clip modules are named by the strings:

ll/mwlA"
" /modlB"
"fmod2A"
"/modZB"
" /m0d3 Au
"fmod3B"
"/mod4A"
"/mod4B"

The name of each clip module names the I/O module (1-4), and
the side (A or B) to which the clip is attached. Appendix E of
the TL/1 Reference Manual contains tables which describe how
I/O module pin positions and clip pin positions are related.

Kinds of Measurements that Can Be Made 3.6.3.

3-98

The measurements gathered by the probe and the I/O module
include both synchronous an nchronous data. Synchronous
data is sampled a some fixed offset from a clock signa edge;
clock signals are specified using the sync command.
Asynchronous data is gathered continuoudly, without respect to
any clock edge. The asynchronous measurements made by the
9100A/9105A system are asynchronous level histories,
transition counts, and frequencies. All other measurements
require a clock.

Q Signatures

A dsignature is a number which represents (or summarizes) the

sequence of data values seen at some circuit node (or pin) in a
UUT. The sync command tells which clock to use in order to

get valid data at the node. The arm and readout commands are
used to begin and end the signature measurement. Finally, the
sig command returns a number which represents the (16-bit)

signature taken at asingle UUT pin. Both the probe and I/0
modules are capable of taking signature measurements.

Histories-Synchronous and Asynchronous

A level higtory is a record of whether or not a signal has taken
on one of the vaues low, high, or invalid during the execution
ofanarm.. . readout block. The exact input voltages that are
conside&ed low, high, or invalid are set by the threshold
command.

A synchronous level history simply examines the level a a pin
whenever a clock edge occurs, and the fact that the value was
low, high, or invalid is recorded. An asynchronous level
history examines the level continuously; as such, the
asynchronous history is useful as a “glitch catcher.”

A level history measurement is in no way equivaent to the kind
of information provided by a logic andyzer. The level history
simply tells whether or not a particular level was ever seen at a
UUT node. The actual level measurement is made within an
arm. . . readout block. The level command returns a number
that tells which levels were seen at that pin:

Value Levels Recorded

none

low only

invalid

low and invaid

high only

high and low

high and invalid

high, low, and invaid

N VnMbh,WN—RLO

3-99

Transition Counting and Frequency Measurement

Trangtion counting and frequency measurements do not depend
on the synchronization method used. The transition count is
smply the number of active rising edges (trangtions from the
invalid to high state) measured at a pin between thearm and
readout commands. The frequency measurement is the
frequency measured at a pin during the arm . . . readout block.

Each device (1/0O module or probe) can perform either a
transition count or afrequency measurement during asingle
arm . . . readout block; the counter command selects which of
these measurements will be made. The count command is used
following readout to return either the transition count or
frequency measured at a UUT pin. If a counter overflows, the
result returned has bit 31 (the high-order bit) set. Frequency
measurements are returned in Hz.

Synchronization Modes 3.6.4.

The sync command sets the synchronization mode (or clock
source) for the probe and I/O modules. For the I/O modules, the
sync mode affects only measurements. any stimulus generated
by an 1/0O module uses timing generated internally by the
9100A/9105A (for the writepatt command) or by a TL/1
program (for the writepin command). The probe’s output,
however, can be synchronized to any of the available clock
SOurces.

Each of the I/O modules and the probe can use a different
synchronization, defined by the sync command. The available
synchronization types are described in the following sections.

Pod Synchronization

The 9100A/9105A pods are designed to provide timing signals,
which indicate the beginning and end of UUT access cycles.
The falling edge of the ~PodSync signa indicates the beginning
of a UUT access. All pods support at least ADDR and DATA
sync modes, see the sync command description and the Fluke
pod manua for the microprocessor you are using.

3-100

Internal Synchronization

Internal sync is used in conjunction with the strobeclock and
writepatt commands. The strobeclock command is used when
measurements (using the probe or an 1/0 module) or stimulus
(using the probe) are performed under the control of aTL/1
program. Interna sync is also used when gathering signatures
with writepatt. Internal sync can aso be used whenever no sync
ggnal is desired, as might be true with an asynchronous level
history, transition count, or frequency measurement.

External Synchronization

Externa sync uses the external control leads on the clock module
(for the probe) or on an I/O module. These leads provide edge-
triggered Start, Stop, and Clock signas, and a level-sensitive
Enable signal. Refer to Figure 3-20 for a diagram of how to set
up external sync in a TL/1 program.

External sync first requires a Start signal edge. Once this has
been received, each active externa clock edge during which the
Enable input is asserted true will trigger a measurement until

either a StOP sgglal edge occurs or the number of enabled clock
edges specitied by the stopcount command has occurred.

For the probe, external sync can also be used in conjunction

with thepulser command. In this case, a pulser output transition
occurs for each enabled clock edge.

3-101

Setsync
to “ext”
Mode

Use connect :
to Attach External

Control Leads

Use edge
to- Set Actgzg Edyes~
and Stop Condition 1

Use stopcount
Yes to SetpCIOCk
Cycle Count

Using a
Stop Count?

;

Use enable
to Select
Enable Condition

Done

Figure 3-20: Setup for External Synchronization

3-1 02

(m\? Freerun Synchronization

Freerun sync is used with the probe when the probe is used to
provide a low-frequency simulus for troubleshooting. It is
driven by an intend 1K-Hz oscillator. Signature and other
measurements should not be made using freerun sync-any
such measurements will be meaningless.

Making Measurements with the Probe and

1/0 Module

3.6.5.

Every time a measurement is made with the probe or 1/O
module, the same four steps must be performed:

1.

Pace probe or I/0O module « Prompt the operator to
connect the probe or I/O module to the UUT, or
direct an autoprober.

Configure hardware - Set the counter mode, sync
mode, and input thresholds. If using external
synchronization, set the active sync sgna edges and
clock enable leve.

Perform measurement « Apply simulus, usng the
pod, probe, or I/0O module, to the UUT within an
arm ... readout block. If udang internd sync, use
strobeclock to trigger measurements. If using
externd sync, use checkstatus to meke sure the
measurement is complete.

Read data for each component pin « Use the sig,
count, and/or level commands to read the
measurement data collected for either the single pin
measured by the probe, or by dl input pins clipped
by an 1/0 module.

3-103

A dimulus program that will be invoked by GFI should not
peform step 1 and step 4 listed aove. GFl will dready have
chosen and placed a measurement device (see the gfi device
command), and GFI will use the sig, count, or level commands
itself, as required. To design a TL/1 dimulus program that may
be run done or under GFI control, see the gfi control command,
and “GH Commands’ in Section 3 of this manud,

Selecting and Placing an /O Module

3-104

Normdly the 9100A/9105A software itsdlf is used to prompt an
operator to select an 1/0 module and to clip the leads of an I/O
module adapter to the UUT. The clip command will ask the
operator to select a clip module and to attach it to the UUT
component specified, For example, the following commands
would prompt the operator to clip onto U22 (a component with
24 pins):

nmodule = clip ref ™u22", pins 24

The vaue returned by clip is the name of the one or more dip
modules selected by the operator to clip to the UUT component.

When using fixturing, the placement of the 1/0 module dips is
preset S0 it is unnecessary and undesirable to press the ready
button on each of the clips (as required by the clip command).
In this case, the assoc command should be used. For example,
the following command would asxociae the "B" sde of 1/O
module 1 with the reference designator U22 (a component with
24 ping):

assoc ref "U22", pins 24, device "/modlB"

The assoc command is functiondly equivdent to the clip
command except that the device ligt is st in the TL/1 program by
the programmer rather than being determined by the I/O module
button that is pressed.

The assign command resets the connection data for a specified
I/O module so that it no longer associates that module with a
particular reference designator. This command is not required in
most programs.

Placing the Probe

The probe command generates a message to the operator to
probe a particular pin on the UUT before a measurement is

taken.

Connecting External Sync Leads

If you are using the "ext” mode in the sync command, the
START, STOP, CLOCK, and ENABLE leads must be
connected. The connect command prompts the operator to hook
U)o the leads from the clock module (for the probe) or from the
1/O module used:

connect device "/probe", start "ul-4", stop
uu4_12", cl ock |vu4_3", conmon "tp4"

Any leads left unspecified in the connect command are
considered to be not used, but the COMMON lead should
aways be connected.

Configuring Measurement Hardware

Before performing any measurements, the response-gathering
hardware must be configured to conform to the test
requirements.

. Logic threshold levels- The threshold command
selects one of four possible logic threshold values for the
probe: TTL, CMOS, RS232, or ECL, and one of two
possible thresholds for the 1/0 module: TTL or CMOS.
ECL isonly valid if the ECL capability is installed.

3-105

3-106

® Synchronization mode - The sync command selects

one of the four available sync modes: external ("ext"),
internal ("int"), “pod”, or "freerun". Each device (probe
and I/0O module) can use a different sync source. As noted
before, freerun sync should be used only with the probe
pulser.

e Counter mode - If measuring trangtions or frequencies,
the counter command must be used.

counter device "/probe", npode "freq"

mod = clip ref mu5%", pins 16
counter device nod, npde "transition"

Using Pod Synchronization

When using “pod” mode for the sync command, you must tell
the pod what kind of pod sync signa should be generated. This
is done with an additional sync command:

sync device “/probe", node "pod"
sync device "/pod™, node "data"

All Fluke pods support at least "addr" and “data’ sync; other
mogles are supported for pods that require these additional
modes.

Remember that a pod can only generate one form of sync signal
at atime: it is not possible to use "addr" sync for one 1/0
module and “data’” sync for another while performing a single
measurement.

Using External Synchronization

Because of its flexibility, external sync requires more
information than other sync modes. This additiona information
is explained in the following paragraphs.

O

1. The active edges of the edge-sensitive Start, Stop,
and Clock signals must be selected. Thisis done
with the edge command:

edge device "/probe", start "+, stop "-n,
cl ock nw=n

2. The clock-enable condition must be chosen. This
condition can be ether “aways’, “high”, or “low”,
or it can be some combination of the PodSync line
and the external enable line as detailed in the
explanation of the sync command in the TL/!
Reference Manual.

3. The stop condition must be specified. It may either
be a trangition of the Stop signal, or a predetermined
number of enabled clock pulses. The edge and
stopcount commands are used to select these options.
Using a Stop ed?e requires that the stop argument for
edge be one of the strings "+” or "-" as shown
above. But stopping after a certain number of
enabled Clock signd transitions requires using both
edge and stopcount:

edge device "/probe”, stop "count"
stopcount device "/probe", count 100

nmod = clip ref ™ud3", pins 22

stopcount device mod, count a * 4

edge device nod, start "-v, clock "+,
stop "“count"

Performing a Measurement

Making measurements requires the arm and readout commands
to enclose a group of TL/1 statements that fprovide gtimulus to
the UUT. When no stimul u3|srec1U| red (for example, when
measunn? the frequency of an oscillator), the arm . . . readout
block will contain no statements. But some stimulus from the
pod, the probe, or an I/0 module is usudly required.

3-107

3-108

arm and readout

Once the measurement hardware has been configured, it is
possible to make a measurement. All measurements are made
withinan arm . . . readout block-the arm command signas the
hardware to begin taking a new measurement, and the readout
commandterminates the measurement. For example, to measure

the frequency output of a clock generator using the probe, you
might use:

probe ref ™u31-5"
counter device "/probe", node "freq"
arm devi ce "/probe"
readout devi ce "/probe"

' No stimulus is required in

! the arm . . . readout block
clock-freq = count device "/probe"

Since the clock generator is a free-running component (it doesn’t
need a stimulus), Smply probing its output pin while power is
applied to the UUT will" give a vaid frequency measurement.

When stimulus is required (which is norma when taking
signatures), either the pod, the probe, or an I/O module can be

used to apply the stimulus. The example on the following page

shows how signatures could be gathered from an 8-bit bus data
buffer usng the pod.

iomod = clip ref "™u23", pins 20
sync device ionod, node "pod"
sync devi ce "/pod", node "data"
arm device ionod
rampdata addr 0, data O, nmask $F
rampdata addr O, data O, mask $Fro
readout device ionod
sighitl sig device my23", pin 18
sighit2 = sig device "u23", pin 17

T

sigbit8 = sig device "u23", pin 11

G

The rampdata commands ingde the arm . . . readout block are
used to generate repeatable data patterns for sgnature anayss.
Since the the data buffers are driven from the microprocessor,
the pod is used to provide the stimulus. The pod is dso the
source of timing information: the 1/O module is synchronized to
the pod data timing since the bus data buffers are being tested.

The checkstatus Command

When usng externd sync, the checkstatus command is used to
determine whether or not the measurement is complete. A
checkstatus command has the form:

status = checkstatus device "/probe"

It returns a 4-bit numeric result, which is interpreted as:

Bit Signal Value

4-31 none aways 0

3 Stop received I=yes, O=no
2 Start received I=yes, O=no
1 Enable received |=yes, O=no
0 Data clocked 1 =yes, O=no

When usng externd sync, the checkstatus command may be
used in a loop while block to check for completion of a
measurement prior to executing a readout command. As
illugtrated in the example below, the loop checks for a complete
measurement every 50 milliseconds (approximate) until it has
checked eght times. If the measurement isn't complete by that
time, an error is reported: ether the clock module lines were not
connected properly by the operator, or the stimulus circuit isn‘t
working.

probe ref Tu43-16"

connect device "/probe", start "Tpi", stop
"TPZ", cl ock "3-25m

sync device "/probe", node "ext"

enabl e device "/probe", node "always"

3-109

edge device "/probe", clock v-n
arm devi ce “/probe™
loops = 0
loop while ((checkstatus device “/probe"™)
<> $F) and (Il oops < 8)
wait time 50
loops = loops + 1
end | oop
readout device "/probe®
if loops = 8 then

I take action for inconplete neasurenent
|

end if

When the TL/1 program itself is providing the stimulus,
checkstatus is usually invoked following the arm . . . readout
block to ensure that the external sync leads were connected
properly and that the circuitry generating the sync signals was
operating correctly. The example below illustrates using
checkstatus when stimulus is provided by a TL/1 program.

iomod = clip ref "u4Q", pins 28
connect device ionod, start my23-4v",
stop "u2-15", clock "ul5-5", common "y23-7"
sync device ionod, node "ext"
sync device "/pod", node "data"
edge device ionod, start "-", stop "-",
clock "+4n
enabl e devi ce ionpd, node "pod"
arm device ionod
rotate addr $1000, data $9669
loops = 0
loop while ((checkstatus device ionod)
<> SF) and (Il oops < 8)
wait time 10
loops = loops +1
end |oop
readout device ionod
if loops = 8 then

I take corrective action

end if

3-110

o

G

Reading Data for Each Component Pin

Data

Once a measurement has been made, the data gathered by the
measurement device is returned to the TL/1 program by using
the count, level, and sig commands. These commands return
the data associated with a dngle pin on a UUT component.
Although an I/O module measures counts, level hidories, and
sgnatures for dl pins on a UUT component a once, the count,
levd, and sig commands return the measurements for single
pins.

Appendix E of the TL/1 Reference Manual shows how clip pins
and I/O module pins are related.

When using the probe, the device name “/probe’ is used:

probe ref "u3-13"
arm device "/probe"

I perform stimulus
readout device "/probe"
sig2 = sig device “/probe"

The data collected by an arm . . . readout block remains vdid
until the probe or 1/0 module is probed or clipped again, and a
new measurement is made. Be sure to use the count, level, or
sig command before performing new measurements, so thet it is
clear that the data being read is from the measurement just made
and that later measurements don't overwrite data that should
have been saved.

Comparison with the /O Module 3.6.6.

The compare command causes an 1/O module to continuousy
(asynchronoudy) compare its inputs with a specified data word,
whenever a match occurs, a iomod_dce condition is Sgndled.
Up to 40 bits of comparison information may be specified,
congging of O's, I's, and X’s (don't care vaues). Any invdid
levels measured ae consdered to be low when making
comparisons. The example below shows how a data buffer
could be used to generate a DCE (data-compare-equal) condition
whenever the pattern 1 1XXXX00 (for inputs A; to As) occurs
on a 74245 octa bus transceiver:

3-111

handl e iomod_dce

. code to handl e iormd_dce condition
|

end ionod _dce

modul e = clip ref 2%, pins 20

compare device nodule, patt
"111XXXX00XXXXXXXXX0X", state "enable"

The part argument indicates that the direction control, pin 1,
should be “A to B" and that the activelow G contral line,
pin 19, should be false, in addition to the data pattern to be
matched.

Once a DCE condition has been raised, the compare command
must be used again before another comparison will be
performed.

Pattern Driving with the VO Module 3.6.7.

The I/O modules can overdrive signds to a dipped component in
order to write patterns to a UUT component. The patterns are
written by the 9100A/9105A without regard for the
gynchronization mode programmed for the 1/O module. To
prevent damage to UUT circuitry, patterns are over-driven for a
maximum of 10 milliseconds

The clear-outputs command places dl 1/0O module outputs in the
high-impedance date, clearpatt removes any previoudy
programmed patterns, and storepatt stores new patterns to be
written to the UUT with the writeBgtt command. Figure 3-21
illustrates how signature analyss of both gates in a 7420 dud 4-
input NAND gate would be peformed in pardld usng an 1/0
module clip. Each NAND gate is driven with the patterns 0000,
0001,. .., 1111. Generdting a sgnature when using writepatt
requires using internd sync. The example gathers a Sgnature so
that the output of the component under test can be compared
with the response of a known-good 7420 device.

3-112

ionod = clip ref ™uwl2", pins 14

reset device ionod

sync device ionod, nmode "int®

clearpatt device *ul2" | gate 1 inputs

storepatt device m™yl2", pin , patt "0000000011111111"

storepatt device ™ul2", pin , patt "0000111100001111"

storepatt device ™ul2", pin patt "0011001100110011"

storepatt device ®wul2w, pin , patt "0101010101010101"
| gate 2 inputs

storepatt device wyl2®, pin 13 , patt "0000000011111111"

storepatt device *"ul2", pin 12 , patt "0000111100001111"

storepatt device "ul2", pin 10 , patt "0011001100110011"

storepatt device ®yl2®, pin 9 , patt "0101010101010101"

arm device ionod

witepatt device ®ul2®, node "pulse"

readout device ionod

gate_1_sig sig device wyl2vw, pin 6 | gate 1 output

gate.2_sig sig device ™ul2w, pin 8 I gate 2 output

[$2 BE = NG

Figure 3-21: Pattern Driving Example

3-113

The maximum pattern depth for writepatt depends on the number
of /0 modules used:

Number of Maximum
[/0O_modules Pattern Depth
1 255
2 128
3 85
4 64

This restriction assures that writepatt will drive pins for no
longer than 10 milliseconds.

Probe Stimulus 3.6.8.

3-114

The sync and pulser commands are used together to generate
stimulus using the probe. The probe pulser will generate a
gtring of high, low, or aternating Pulss nchronized to any

available timing source. For example, the following statements
will produce alow pulse at the trailing (rising)’ edge of the
~PodSync signal:

probe ref wyl4-5"

sync device "/probe", node "pod"
sync node ™addr"

pul ser node "low

The Erobe pulser can aso be synchronized to the 1 kHz freerun
clock, to internal sync that generates a pulse whenever the
strobeclock command is invoked, or to an externa sync source.

When externa sync is used, the Start, Stop, and Enable signals

control when the pulser operates, as does any stop count in
effect. Signature gathering with the probe is possible while the

pulser is used.

Changing the Calibration Delay Offset for the
/0 Module or Probe 3.6.9.

Both the probe and 1/O modules have hardware delay lines that
can adjust the relative timing between clock and data signals.

These delay lines are cdibrated by using the MAIN MENU key
and then the CAL softkey on the operator's keypad. There is a
different offset value stored for each sync mode. See the
difscussé?n in Appendix | of the TL/I Reference Manual for more
information.

When the calibrated offset delay for an 1/0 module or the probe

is not appropriate for a measurement, the setoffset command
may be used to change the delay. For example, even though a

pod manua may indicate that data should be sampled at 30
nanoseconds after the rising edge of a signal, seroffser could be
used to sample at other times to check for marginal UUT
performance.

The setoffser command takes an argument for the desired offset
value. This offset has a bias of 1000000. So if you want to
program an offset for the probe of -30 nanoseconds in external

sync mode, do the following:

sync device "/probe", node "ext"
offset-in-range = setoffset device "/probe",
of fset 1000000 - 30

The setoffser command returns either 0 or I. A 1 is returned if
the delay could be programmed successfully. A O is returned if

the delay requested is outside the range of the hardware, in
which case, the delay lines will be set as close as possible to the

req_ueited delay (that is, to the maximum or minimum delay
setting).

Delays can be varied in approximately 4-nanosecond steps for
the probe and 15-nanosecond steps for the I/O modules. After
the setoffset example (above), the current offset value might
equal 999972 (100000 - 28, or -28 nanoseconds). This would
igglicate that -28 was the closest possible setting to the desired

3-115

Thg:egetoﬁ‘set command is valuable for accessing the current

offset value for a sync mode in order to view or to save it:
current-offset = getoffset device *'/probe"
NOTE

Both the setoffset and getoffser commands reflect the
offset for the current sync mode only.

FAULT CONDITIONS AND FAULT HANDLING 3.7.

3-116

When a fault is detected in a UUT, the normal action of
9100A/9105A software is to “raise a fault condition.” The
program raising the fault condition is suspended until some
corrective action is taken. The corrective action may be
performed automatically either by a fault condition handler or
manually by the operator using the operator’'s keypad.

TL/1 is designed to permit you to fully utilize the 9100A/9105A
fault condition handling and reporting mechanisms in your own
programs. A test may:

* Raisefault conditionsin aTL/1 program, whenever the
TL/1 program detects a fault in a UUT.

* Handle any fault condition, whether it is reported by a
built-in test, or a test written in TL/1.

* Provide an exerciser for any fault condition, in response to
an operator pressing the LOOP key to cause a repeated
generation of the fault condition. This is also called
exercising a fault.

A test (whether built-in or written in TL/1) may either pass or
fail; this status may be tested by using TL/1 conditiona
statements.

You may write TL/1 procedures to override or supplement the
9100A's norma fault-handling behavior whenever necessary.

=
Q
i

The following paragraphs will give you the information needed
to write such procedures.

Raising a Fault Condition 3.7.1.

A fault condition is ssmply a notification by a program or
function (whether built-in or written in TL/1) that afault has
been detected in a UUT. In TL/1, a fault condition is raised by
using the fault command, for example:

fault bus-data-tied addr a, data d, mask m

This fault command would raise a bus datg tied fault condition
Bor thé-,\ bits given in the 64-bit mask m detected at address a with
ata d.

A fault condition consists of:

* Fault condition name: In the example, the name of the
fault condition is bus-data tied. A number of fault
condition names are predefined by the 9 100A/9105A
software (see Appendix G of the TL/] Reference Manual).
'ghe fgdult condition name describes the kind of fault

etected.

® Fault condition arguments: In the example, the
address and data which made the fault appear are reported
aong with the fault name. The fault condition arguments
farecjtust like the arguments for any other TL/1 program or
unction.

Raising afault condition islike calling a TL/1 function. The

faulr command starts a search for a fault condition handler
designed to handle that particular fault condition. If your
program doesn’t supply a handler for the fault condition, the
9100A/9105A will print a message describing the fault condition
on the operator’ s display and then wait for the operator to
choose a course of action.

Figure 3-22 shows how the 9100A/9105A acts when a program

raises a fault condition. The following sections will fill in the
details of this process.

3-117

Raises a
Fault
Condition

Handler

Display Fault Message on!
Availabhla?

Operator’s Display

Execute
Handler

(Resume Test l

Figure 3-22: Raising and Handling a Fault Condition

3-118

e

Fault Condition Names 3.7.2.

Fault condition names teke the form of any legd TL/1 name. A
number of fault condition names are predefined by the
9100A/9 105A software; these fault condition names and their
aguments are lised in Appendix G of the TL/I Reference
Manual. When one of these fault conditions is reported on the
operator’s display, the 9 100A/9 105A uses specid message
formats appropriate to the fault condition. These messages are
liged in Appendix H of the TL/] Reference Manual and
Appendix F of the Technical User's Manual.

You are free to choose any fault condition name you like for
faults unique to your UUT and tegting requirements. But giving
non-sandard meanings to the standard 9100A/9105A fault
condition names is probably not a good idea.

Creating a Fault Condition Handler 3.7.3.

Any TL/1 program or function can contain definitions for one or
more fault condition handlers. The name of the handler is the
name of the fault condition it is meant to handle this name can
be one of the 9100A/9105A built-in fault condition names, or the
name of a fault condition you have created for your own use.
Figure 3-23 shows a program that includes handlers for the
pod-addr-tied and podforcing-active built-in fault conditions
(in the program uut-test), and a handler for the pod-addr-tied
built-in fault condition (in the function mem-test).

A diagram of how the 9100A/9105A invokes uut-test, which in
turn invokes mem-test, which includes a read command is
illustrated in Figure 3-24.

A fault condition handler is a block of code, like a program or
function, possessing an optional argument list and local
vaiables. When the program uut_test is invoked, its fault
condition handlers for pod addr tied and bus data tied will
become active. Likewise, when mem_test iscalled by uut test,
its own fault condition handler for pod-addr-tied will become
active as well.

3-119

program uut_test

function mem test (start, last)
declare numeric start = 0
declare numeric |ast
handle pod-addrfied (addr, access-attenpted, mask)

end pod-addr-tied

first = read addr start | Here is a read conmand

end nmem_test

handl e pod-addr-tied (addr, access-attenpted, mask)

end pod-addr-tied

handl e pod-forcing-active (addr, ctl, mask)

end pod-forcing-active

if mem_test start 0, last $prrr fails then I First command after
I definition blocks

end if

end uut test

Figure 3-23: Example of a Program with Handlers

3-1 20

G

A fault condition handler defined within some program or
funcgltlan, p, is active from the time p is called until p returns to
its caller.

How a Fault Condition Handler Is Chosen 3.7.4.

When a built-in test or TL/1 program raises a fault condition, the
9100A/9105A software searches for an active handler to deal
with the fault condition. This search begins in the program or
function that raised the fault condition, and then, if a handler is
not found, the search continues in the software block that called
the program or function, and so on. Figure 3-24 shows tha at
each successive level of invocation, a new set of fault condition
handlers may be made available. And, when returning from
each program or function, the fault condition handlers for that
invocation become unavailable.

* The read command may raise pod-addr tied,
podforcing active, or pod_uut power fault conditions.

Since read is a built-in function, it contains no fault
condition handlers.

* The mem_test function contains a fault condition handler
for the pod_addr_tied fault condition.

* The uut_test program contains fault condition handlers for
pod_addr tied and podforcing-active fault conditions.

. The 9100A/9105A prints a message on the operators
display for any unhandled fault conditions.

If the read command raises a fault condition when it has been
invoked as shown in Figure 3-24, which handler will take
control?

The search for a fault condition handler begins in the test which

raised the fault condition. If no fault condition handler for the

fault condition is found in that software block, the search
continues in the block that called the test that raised the fault

condition, and S0 on.

3-121

Takes Care of Al
9100A9105A |------ Unhandled Fault
Conditions
3
Invokes Returns to
—
TLA Fault Condition Handlers for
Program [~"""°" pod-addr-tied and
“uut_test” pod-forcing-active
Invokes Retums to
A
TN .
Function f—-——av Fault_ Confjmon Handlers ~ for
pod-addr-tied
“mem_test”
7
Invokes | Retums to
: No Fault Condition Handlers
May Raise Fault Conditions:
read Command p==-=-~- pod-addr-tied or
pod-forcing-active or
pod uut_power

Figure 3-24: Locations of Fault Condition Handlers

G

¢ |f read raised a pod-addr-tied fault condition, the search
for an active pod-addr tied fault condition handler would
be unsuccessful with&read itself (the built-in function,
read, contains no fault condition handlers), but would
succeed in the next software block searched, mem test, the
software block that invoked read. The fault condition
handler pod-addr-tied within mem test will be used
instead of the pod addr tied fault condition handler within
uut_test.

¢ If read raised a podforcing-active fault condition, the
search for an active fault condition handler would be
unsuccessful first in read (the built-in function read
contains no fault condition handlers) and also in mem test,
but would finaly succeed in uut_test. -

. If read raised a pod-uutgower fault condition, the search
for an active fault condition handler would be unsuccessful
first in read (the built-in function read contains no fault
condition handlers), then in mem test, and aso in
uut-test. In this case, the fault condition name and any
arguments used would be displayed on the operator’s

display.

S0 the rule for finding a fault condition handler is. the search

begins in the software block that raised the fault condition and

continues back through al of the calling programs and functions
until a fault condition handler that has the same name as the fault

condition being raised is found. If this search process is
unsuccessful, the fault condition name and arguments are
displayed on the operator’'s display.

How a TL/1 Fault Condition Handler Is Invoked 3.7.5.

The job of a fault condition handler is to perform some action
appropriate to the fault condition, and then dispose of the fault
by performing a return.

Once an active fault condition handler matching the current fault
condition is found, it is caled, just like any other TL/1 block,
using the arguments supplied in the fault command. A fault
condition handler may do anything another TL/1 program or

3-123

condition handler may do anything another TL/1 program or
function block may do, including raising fault conditions and
invoking tests.

If the fault condition handler itself executes a fault command, a
new fault condition is raised. As with any fault condition, the
search for a handler begins in the current Software block (in this
case, the handler itself) and then continues to the caling block.
Therefore, a fault condition handler must not raise the same fault
condition it handles or an infinite recursion will result. In this
case, the 9100A/9105A would generate the following error

message:
Stack overflow or infinite recursion

A fault condition handler terminates its execution by performing
a return, which discards the fault condition and alows the test
program to proceed.

Unhandled Fault Conditions 3.7.6.

3-124

If you don’'t supply a handler for a fault condition, the
9100A/9 105A does the following:

® Digplays a predefined message describing the fault
condition for built-in fault conditions (see Appendix H of
the TLII Reference Manual).

®* Displays a message giving the name of the fault condition,

and the fault condition argument names and values for
non-built-in fault conditions.

The 9100A/9105A will then wait for the operator to select an
action from the operator’s keypad as shown in Figure 3-25. The
operator may:

. Press CONT: This continues the test, but the test is
considered to have failed (see the “Termination Status’
sec tion).

* Press REPEAT: The test is restarted by reinitiating
execution of the top-level program.

A Fault Message
Is Displayed

REPEAT~

Operator's
Selection?

Repeat Test Resume Test

Exerciser DIiEspIay
Active? rror
Message

Execute Exerciser
Block

Figure 3-25: Alternative Actions for Unhandled Faults

3-125

* Press LOOP: If an exerciser for the fault can be found,
it is invoked to try to re-create the UUT fault so that the
operator can diagnose the problem.

. Press HELP: Displays a user-defined message from the
HELP library if a message was defined for this fault name.

Creating a Fault Condition Exerciser 3.7.7.

A fault condition exerciser is a software block designed
specifically to reproduce afault conditioninaUUT. A fault
condition exerciser resembles a fault condition handler in that:

* A fault condition exerciser is defined within a program or
function.

. A fault condition exerciser is active from the time that the
program or function that defines the exerciser is called,
until that program or function returns.

. A fault condition exerciser has a name that is the name of
the fault condition that invokes the exerciser.

® The search for an active fault condition exerciser proceeds
from the software block that raised the fault condition.

For example, the function resz18 could have an exerciser

designed to re-create an sw-short fault condition simply by

adding an exerciser block as shown below. The exerciser might

Eglve arguments such as the pogtion argument in the example
ow:

function test18 (start, |ast)

exercise swshort (position)

end sw_short

end test18

3-126

A fault condition exerciser has an argument lig, just like a fault
condition handler, that is comprised of the fault condition
arguments.

A fault condition exerciser is invoked when the operator presses
the LOOP key on the operator’s keypad (see Figure 3-25). The
exerciser is invoked continualy until the operator presses the
STOP key on the operator’s keypad. When an exerciser raises a
fault condition, the exerciser is conddered to have faled. No
fault condition handler is invoked, and a message gppears on the

operator's display.

Termination Status (Passes or Fails) 3.7.8.

TL/1 programs and functions may ether pass or fal. The TL/1
functions passes and fails are used to tet this datus in if
datements.

if testbus addr $8000 passes then y = 1

if write($1000, $1FFF) fails then return

Every time a program, function, or built-in test is cdled, its
datus is initidly st to “passes” But once a fault condition is
rased, the termination datus may change as illudrated in
Figure 3-26 (when handling fault conditions) and Figure 3-27
(when exercisng fault conditions).

. If the fault condition is handled by a TL/1 fault condition
handler that returns to the cdling block, the test gtatus is
not changed snce the fault handler is assumed to have
fixed the problem.

. If the fault condition is not handled and the operator
presses the CONT key to continue the test before running
an exercise, the test gatus is st to “fals’.

. If the operator presses the LOOP key to run an exerciser,
the satus of the last full invocation of the exerciser is
retained: if the last iteration of the exerciser raised a fault
condltlon the retaned datus is “fals’, othewise it is

". Once the operator presses the CONT ke?/
continue the test, the status of the test is set to “fals’ if the
exerciser's daus was “fals’.

3-127

3-1 28

(Invoke Program »

A

Status Is
Set to
"passes"

Any Fault
Conditions
Raised?

All Fault
Conditions
Handled?

Stop Test and
Display Fault Message

Any
Programs
or Functions
Called?

Status Is
Set to
*falls”

Return Status

to Caller

Figure 3-26: Termination Status when Handling Fault Conditions

Run Exerciser
until STOP
Is Pressed

Operator's
Selection

Was
Exerciser
Run?

G

A
Status Is Status Is
Set to Setto
"passes” “fails”
bl

‘ Resume Test)

Figure 3-27. Termination Status when Exercising Fault Conditions

G

3-129

® |f any program or function called by a software block fails,
the status of the calling software block is set to “fails’.

HELP LIBRARY 3.8.

The HELP library alows you to associate a help message with
each fault name. Help messages may contain any text, but are

most often used to display UUT-specific troubleshooting hints
or procedures to follow.

HELP messages are stored together as text files in the HELP
library. The 9100A editor edits the HELP library as object
HELPLIB type LIBRARY. Refer to Figure 3-28 snowing the
editor display of a HELP library.

INDEX File 3.8.1.

The text file INDEX in the HELP library is special The INDEX
file contains zero or more lines of the form:

<fault name> <text file name>

<text file name> is an object name naming one of the text filesin

the HELP library. Refer to Figure 3-29 showing a typical
INDEX file. Y J ganp

HELP Messages 3.8.2.

3-130

When an unhandled fault is displayed on the front panel of the

mainframe, press the HELP key on the operator’s keypad. The
fault name is compared with each entry in the HELP library
INDEX filefor the current USERDISK. If amatchisfound,
and the named text file exists, it is loaded from the disk and
displayed. Otherwise, the 9100A/9105A beeps to indicate that
no help is available for the current fault.

DESCRIPTION

PRESS A COMMAND KEY OR HELP KEY

[
[

i
[RO

CoPY

REMOVE SAYE

Figure 3-28: Editor Display of the HELP Library

3-131

Figure 3-29: A Typical INDEX File

3-1 32

") For the HELP facility to work, the fault must be displayed on
Q the application display. Thus, the HELP facility works only
when the 9100A/9105A is controlled from the operator’s front
panel, and is not available when running programs from the
Debugger. Also, the fault must be an “unhandled” fault. This
means either that there is no active handler for the fault, or that
inside the handler is a refaulr or fault statement.

The name of the fault must exactly match the <fault name> in the
HELP library’s INDEX file. This name is the name appearing
in the most recently executed fault statement. For example, If
the program executes “fault bad_DMA", and this fault Is not
handled, and there is aline in "/hdr/helplib/INDEX" with the
form:

bad_DMA dma_msgl

Then the text file "dma_msg1" is displayed when the HELP key
IS pressed.

If there is a handler for bad_DMA which does further diagnosis
and executes the statement “fault DMA_no_handshake", then the
HELP file associated with DMA_no_handshake (if any) is
displayed, not the file associated with bad_DMA.

HELP files may be written for both built-in and user-written
faults. A number of HELP files for built-in faults are provided
on the Master User Disk. For a list of built-in fault names, see
Appendix G of the TL/I Reference Manual.

GFI COMMANDS 3.9.

TL/1 programs and the Guided Fault Isolation (GFI) software of
the 9100A/9105A are designed to work together. TL/1
programs can call upon GFI to perform functional tests on
selected UUT circuit nodes; GFl invokes TL/1 stimulus

rograms (also caled stimulus routines) to initialize the UUT, to
|Ritialize 9100A/9105A hardware, and to apply the stimulus to
the UUT.

3-133

3-134

The job of GFI is to interpret the UUT database stored on disk.
Section 5 of this manual gives full information on how GFI
databases are created. The GFI software is designed to use the
information in each UUT database to:

¢ Decide which node of the UUT should be tested next.
¢ Execute TL/1 stimulus programs to exercise the node.
. Compare the actual and expected results of the stimulus.

¢ Either make an accusation about a faulty part or
connection, or test another node.

TL/1 programs provide the customization required to gather
responses from a particular UUT in a form usable by GFI. This
section will show:

. How TL/1 stimulus programs, run under GFI control,
should retrieve information from GFI.

. How GFI can be used by TL/1 programs to automatically
run tests on UUT nodes.

Figure 3-30 summarizes the commands used to communicate
between TL/1 and GFI.

Used When a Command Purpose
Program Is
Invoked by GFI ofi control Tells if program was invoked
by GFI.
ofi device Name of measurement device
chosen by GFI.
ofi ref Get name of node being tested
by GFI.
dfi fail Forces GFI to fail a pm.
gofi pass Forces GFI to pass a pin.
Invoking GFI gfi accuse Get GFI diagnosis of problem.
ofi autostart Enable or disable automatic
startyp of GFl.
ofi clear Reset GFI for new UUT.
ofi hint Add node to end of GFI's
suggestion list.
ofi status Return status of test on node.
ofi suggest Get next node in GFI's hint list.
ofi test Invoke GFI on a node.

Figure 3-30: Commands Used to

Communicate Between TL/1 and GFI

3-135

Stimulus Programs Called from GFI 3.9.1.

3-136

Whenever GFl decides that a UUT node needs to be tested, it
looks in the UUT database to find the names of one or more
TL/1 programs, A simulus program should peform reads and
writes to the UUT tha exercise a node in a repeatable way.
Sections 5.5.8. and 5.5.9. of this manuad contain information on
how UUT nodes and stimulus programs are related.

A dimulus program is an independent program that must:

. Initidize the UUT as required in order for the simulus to
be applied.

g Initidize the pod and the measurement device (I/O module
or probe) GFl has chosen to measure the response.

* Apply the simulus to the UUT in an arm . . . readout
block. If any faults are detected, simulus programs may
rase fault conditions.

. Read the results of the stimulus by using the readout
command.

Stimulus programs do not compare the results of the simulus
with the results learned by GFI; the GFI software itsdf will do
the comparison. An outline of a GFl gimulus program is
shown in Figure 3-31. The only GF command used is dfi
device, which gives the name of the device (probe or 1/0O
module) to be used in the setup actions and in the arm and
readout commands. The gfi device command will report an
error if it is used in a program not called from GH.

program exanplel
!

I Find out name of measurenent device

devlist = gfi device
I Initialize measurement device and pod. I nclude connect
| statements to attach external control [ines.
I Perform stimulus in an arm. . . readout block

arm device devlist

O

I Provide stimulus to make nodes wiggle

I Make sure signatures are conplete by calling
I checkstatus if using external sync on |/O nodule.

readout device devlist
end exanplel

Figure 3-31: Stimulus Program Called from GFI

3-137

Stimulus Programs Called from Either GFlI
or the Operator’'s Keypad 3.9.2.

The gfi control command returns the string “yes” when used in a
stimulus program called from GFI; otherwise it returns the
gring “no” The gfi control command (as shown below) alows
you to write stimulus programs that may be called either by the
operator, using the operator's keypad, or from GFI.

program exanpl e2

' If called from GFl, use neasurenent device
' chosen by GFl, otherwise use ™/modl"™.
if (ofi control) = "yes™ then

devlist = g¢fi device
ref = gfi ref

el se
devlist = "/modl"

end if
!

' Remainder of processing is identical whether

I or not this program was called by GFl.
1

end exanpl e2

Figure 3-32 shows the typical steps that most stimulus programs
should use.

3-138

e

Select
Measurement
Devica

:

Called
by GFI?

Stimulus Program
Is Called

Get Measurement
Device from

GFi

:

set up Pod
and Measurement
Device

Measurement ==
Device

Provide
Stimulus to the

Check

readout Response
from Measurement
Device

3
End
Stimulus Program

Figure 3-32. Typical Steps for Stimulus Programs

3-139

Invoking GFI from a TL/1 Program 3.9.3.

3-140

GFl is designed to be run either from the operator's keypad or
from a TL/1 program. Y ou may want to invoke GFI from a
program in order to:

Generate commands for an autoprober - The 9100A/9105A
does not directly support automatic probing of components
on aUUT. But aTL/1 program can generate commands
fC(;JIr: Ian autoprober, based upon suggestions generated by

Generate a report based on the results of GFI - Automatic
generation of a report of nodes tested, passed, failed, and
accused requires a TL/1 program that creates a record of
the GFI results.

Provide hints to GFI - Functiona tests for the functiona
blocks of a UUT can use GFI to test just the outputs of the
functional blocks. When failures are discovered, the
functional tests can provide hints to GFI to identify the
nodes most likely related to any particular failure.

A TL/1 program that simulates the action of the GFI key on the
operator's keypad would use the gfi clear, gfi test, gfi accuse,
and gfi suggest commands. An example of such a program,
which begins oPeration a its argument, refdes, and drives an
autoprober, is illustrated in Figure 3-33. The commands used
are:

* gfi clear -initidizes GFI for a new UUT.

* gfi hint - adds a pin name to GFI's suggestion list. It is
used in this example to give GFI a place to start on a new

UUT.
* gfi accuse - is a dring that identifies the problem which
GFI has found.

* gfi uggest - is a gtring that is the name of the next node
on GFI's list of nodes to be tested.

* gfitest.invokes GFI to perform all stimulus programs
identified in the UUT database for that node. The
autoprompt “no” argument prevents GFl from telling the
operator where to place the probe, since the example uses
an automatic probe.

* gfi status- returns one of the strings “good”, “bad”, or
“untested”. In this example, it is used to generate
messages sent to a log file which records the results of
testing each pin on each UUT.

3-141

program gficontrol (refdes)
declare string refdes = "u41-3"
1
I Initialize GFl operation
gfi clear
1
I Tell GFI to start at "refdes™
gfi hint refdes
1
I Test as long as GFl has no accusation but
I has another suggestion to offer.
|oop while (gfi accusel = wm and (gfi suggest) <> wuw
I Probe to next pin, test it, and log test results.
nextpin = gfi suggest
| autoprobe is a user-defined program to nove an
I autoprober arm to the specified pin
autoprobe moveto nextpin I moveto iS an argunent
gfi test nextpin, autopronpt wpon
' logtest is a user-defined program to log failure data
logtest pinN nextpin, status (gfi status nextpin)
end |oop

I Record test results in log file.
if (gfi accuse) <> wn then
I loguut is a user-defined program to log failure
I messages
loguut message (gfi accuse)
el se
loguut message ngr1 failed"
end if
end gficontrol

Figure 3-33: GFl Called from a TL/1 Program

3-1 42

name

Section 4

Debugger

The debugger is an interactive tool for finding logica problems
in TL/1 programs. Usng this tool, you can initiste and control
the execution of the TL/1 programs and functions. You can dso
view and dter the vaues of variables a intermediate stages of
program execution. By following the path of execution and
examining the vaues of variadles during execution, you can
determine if a program performs as intended.

The debugger requires compiled programs for execution and
setting breskpoints. If you have not compiled your programs
before entering the debugger, the debugger autometicaly
compiles them as they are executed. If a program cannot be
compiled due to erors, an eror message is dislayed and
debugging cannot be continued. Exit the debugger, edit the
program, and correct the error.

It is recommended that you use the COMPILE softkey and
compile dl the programs that you will be executing before you
enter the debugger. This dlows you to find dl the compilation
erors a one time, indead of coming across them one a a time
during your debugging sesson.

4-1

ENTERING AND EXITING THE DEBUGGER 4.1.

You access the debugger by pressing the DEBUG softkeK while
ou are editing a program. To return to the editor, press the Quit
ey. The cursor position is maintained when you move from the

editor to the debugger and vice versa.

If you enter the debugger from a program that has not been
compiled, the program is compiled automatically to ensure that
the program Is free from syntax errors and that it can be
executed. If the compiler detects errors, an error message is
displayed. Exit the debugger, edit the program and correct the
error.

DEBUGGER SCREEN 4.2.

4-2

The debugger screen, shown in Figure 4-1, contains the same
windows as the editor screen. It also includes an additional
window, the execution window, which contains:

* Breakpoint indicators (BRK): Breakpoints may be set at
specific lines in the program; a breakpoint causes the
debugger to stop execution just before executing the
statement(s) on the line containing the breakpoint.

® Execution pointer (—): This symbol is located a the line
containing the next statement to be executed. The only
exception is if execution is stopped due to a fault or error;
then the execution pointer is located at the line that caused
the fault or error.

The execution pointer appears in boldface if it covers a
BRK.

™
(,J PROGRAM EXECUTION 4.3.

Once you dat execution of a program with the debugger,
execution can stop for any of these reasons:

. The end of the program is reached.

. A breakpoint is reached.

. An error occurs.

. A fault is detected on the UUT.

. The Quit key on the programmer’s keyboard is pressed.

program demc {num, address)
declare

numeric num

numeric. address

end declare

E:

open device “/terml”, as “output”

if num = O then
print "The number of iterations is zero"
else
loop While num 0 0
data = read (address)
print "The data read = *, data
M= UM -2
end loop
end if

i

end demo

= FB=TF3 = Fi0 =

Figure 4-1: Debugger Screen Example

4-3

When execution stops because of an error or because a
breakpoint is reached before the end of the program, the word
“STOPPED” gppears on the status line. If a fault is detected, the
word “FAULTED” agppears on the datus line. If the end of the
program is reached, the word “COMPLETE” appears on the
datus line. The debugger screen is updated to show the
satement at which execution is stopped; the execution pointer is
located at the line containing the next statement to be executed,
unless a fault or error has occurred, then the execution pointer is
located at the line that caused the fault or error. If afault or error
has occurred, a message is displayed. While the program or
function is stopped, you can examine and/or change the vaue of
vaiables. You can then continue execution of the program or
function, or resart execution from the beginning.

Executions can be nested. For example, if program execution is
stopped at a breskpoint, you can gart executing another program
or function by pressng the EXEC key. When that program or
function completes execution, the debugger returns to the point
a which you were origindly stopped, and you can continue

debugging the origind program.

When a program completes execution, the return vaue from that
program (if there is one) is displayed on the prompt line
Normdly, the screen is updated to diﬁlay line 1 of the program
that finished executing. However, if the program that completed
was a nested execution, the display is updated to show where
execution was stopped on the origina program.

DEBUGGER KEYBOARD 4.4.

4-4

The debugger keyboard is the same as for the editor. In

icular, the Msgs key, the Help key, the down arow key,
r.;%t the up arrovflg keﬁ/perform tkrl)e gﬂe or amilar functioe;{s
The Info key is inactive because the diglay contains no
information window. The Edit key is inactive because you
cannot edit other files from the debugger; to return to the editor,
press the Quit key.

(™ DEBUGGER COMMANDS (SOFTKEYYS) 4.5.

The fdlowing softkey commands are available only through the
debugger:

EXECUTE: Stats execution of a TL/1 program or a
function defined in the current program. You enter the
name of the program or function in response to the prompt
or use the default name provided. If the program or
flé?ction requires arguments, you are prompted for ther
vaues.

If the argument being prompted for is numeric, you can
enter it with aether a decima or hexadecimd radix. The
default is decimd; to enter a hexadecima number, place a
"$" character in front of the number.

You can EXEC any program that is within the standard
TL/1 search path. When you enter the name of a program
to be EXECed, the debugger first looks for the program in
the currently sdlected UUT directory. If the program is not
there and a pod is plugged into the 9100A, the pod
directory is searched for the program. If the program dill
is not found, the program library is searched.

The debugger can only execute programs that have been
compiled. If you try to EXEC a program that has not been
compiled, the debugger autometically compiles it before
attempting to execute it. If the program cannot be
compiled, a compiler error message is displayed. At this
point you need to exit the debugger, edit the program, and
fix the error.

If the debugger stops in a function or handler that declares
a vaidde with the same name as another function,
EXECUTE will not dlow you to execute that other
function.

During program execution, the messages window is
activated when necessary to display TL/1 output on the
monitor. The messages window remans active until
execution is completed. After program completion, the

4-5

4-6

messages window is replaced by the debugger screen.
Press the Msgs key to review the TL/1 output last

displayed.

If you want to stop program execution prior to completion,
Bras the Quit key on the programmer’s keyboard or set a

reakpoint. The STEP, NEXT, CONT, SHOW, and SET
softkeys are vaid only when the program is stopped prior
to completion.

VIEW: Displays an dternate TL/1 program. Enter the
name of the desred program in response to the prompt.
The program is loaded off the disk and displayed. Once a
program is displayed, you can scroll through it, st and
clear breakpoints, and execute it. This is a convenient way
to examine caled programs from within the debugger.

When you enter the name of a program to be VIEWed, the
debugger uses the standard TL/1 program search path to
find the program. Firg it looks in the currently sdected
UUT directory. If the program is not there and a pod is
plugged into the 9100A, the pod directory is searched for
the program. If the program till is not found, the program
library is searched.

The VIEW softkey does not affect program execution.
You can gill CONT, STEP, or NEXT a stopped program
after usng the VIEW softkey.

BREAK: Toggles the breskpoint daus of the line at
which the cursor is located. If the line does not contain a
breakpoint, pressing the BREAK softkey sets a
breskpoint; an indicator gppears in the execution window.
If the line dready contans a breskpoint, pressng the
BREAK softkey clears the breskpoint; the indicator

disappears.

A breskpoint can be set for any program line that performs
an action. A blank line, the lines of a declaration block,
the firg line of a definition block, and a line containing
only alabel or a comment cannot contain a breakpoint.

If you try to set a breakpoint in a program that has not been
compiled, the debugger automatically compiles it before
setting the breskpoint. If the program cannot be compiled,
a compiler error message is displayed and the breakpoint is
not set. At this point you need to exit the debugger, edit
the program, and fix the error.

Setting a breakpoint is a convenient way to activate the
CONT, STEP, NEXT, SHOW, and SET softkeys.
Setting a breakpoint at the first executable statement of a
program allows you to gain control so %/ou can step
through the program while following the path of execution
or examining (or setting) the value of variables. Setting a
breakpoint at the last executable statement of a program

dlows you to examine variable values that exist at the end
of the program. Setting a breakpoint at intermediate points
in a program alows you to stop execution at these points

and then to single-step through the program after one of

these breakpoints is encountered.

CONT (CONTINUE): Continues the execution of a
stopped program from the statement at which it was
stopped. In some cases, it may not be possible to continue

execution. In these cases, the following message will
appear on the status line;

Execution cannot be continued. <PRESS RETURN>

Press the Return key followed by the EXECUTE softkey
to start execution again.

STEP: Executes the next TL/1 line; the execution pointer is

moved to the next line to be executed. If a line contains
multiple TL/1 statements, all the statements are executed.

If the executed line is a program or function invocation, the

execution pointer moves to the beginning of the function or

program, and the screen is updated as necessary. There
may be a dight delay while the program to be displayed is
loaded off the disk.

4-7

4-8

NEXT: Executes the next TL/1 line; the execution pointer

is moved to the next line to be executed. If a line contains
multiple TL/1 statements, all the statements are executed.

If the executed statement is a function or program
invocation, the function or program is executed
completely; execution does not pause inside the function

or program.

SHOW: Displays the current value of a variable. If isis a
numeric variable, it will be displayed as a decimal vaue.

To display the equivalent hexadecima number, press the

Shift key and the SHOW softkey. Y ou enter the variable
name in response to the prompt. If the variable nameis
valid, the vaue of the variable is displayed. If the variable

name you specify is not valid, an error message is
displayed.

SET (SET VARIABLE): Sets the value of a variable. You

enter the variable name and a value in response to the
prompts. If the variable does not exist or the value is not

valid for the specified variable, an error message is
displayed.

If the variable being set is numeric, you can enter it with
either a decimal or hexadecimal radix. The default is
decimal; to enter a hexadecimal number, place a "$"
character in front of the number.

INIT (INITIALIZE): Clears al breakpoints, variable

values, and other execution information so a program may
be run (or re-run) from a known initial state. Also
discards al nested executions. The display is updated to
show the origina program that was being edited when the
debugger was entered.

SEARCH: Moves the cursor to the next occurrence of a
character string you specify at the prompt:

SEARCH FOR

The character string may be a word, part of a word, or
severd words, up to 20 characters in length. The search is
case sendtive, the upper-cae “A”, for example is
different from the lower-case “d’.

If the debugger does not find the character string between
the cursor position and the end of the file, the search wraps
aound to the beginning of the file and continues. If the
debugger does not find the character string anywhere in the
file, It digdlays an error message. The debugger retains
the gtring you enter and offers it as a default the next time
you issue the SEARCH command.

The search dring can contain one or more wildcard
characters (*). For example, if you specify MOD*, the
debugger finds the next occurrence of MOD followed by
any sat of characterss MOD2, MODULE, or MODE, for
example. If you want to search for a literd agterisk (*),
enter two asterisks (**) in the search dring. For example,
to search for the expresson 2*3, you would enter the
search string Z2¥*3, By entering two asterisks, the
debugger interprets the character sequence as a literd
agerisk rather than as two wildcard characters.

To reissue your last search (and avoid re-typing the search
dring), press the Shift key and hold it down while
pressng the SEARCH softkey.

FAULT: Turns the fault window on and off.

4-9

USING THE DEBUGGER 4.6.

This section shows how to use the debugger when:

o Execution errors occur.

. Debugging programs.

¢ Debugging blocks within programs.
o Debugging chained programs.

In addition, since some debugger commands are only vdid a
particular times during the execution of a program, the section
below discusses when debugger commands are vaid.

Availability of Debugger Commands 4.6.1.

Before Execution Begins

4-10

When the debugger is firs dtarted, program execution has not
yet begun. The debugger knows nothing about the contents of
the program, and program variables have not been created yet.
Therefore, trying to use the SET softkey or the SHOW softkey
prior to program execution will cause an error message to be

displayed.

Likewise, the STEP, NEXT, and CONT softkeys cannot be
used; they may be used only after execution of a program has
begun. Before execution begins, you may set and clear
breakpoints or initialize the debugger (which clears all
breakpoints).

The debugger is in this state when INIT is pressed.

O After Execution Ends

When program execution is complete (execution has not been
stopped by a breskpoint or by pressing the Quit key), al locd
varidbles are discarded, but the breakpoints are not cleared.
Trying to use SET or SHOW after program execution has ended
will only work for globd and persgtent variables.

Likewise, the STEP, NEXT, and CONT softkeys cannot be
used.

As described below, program executions can be nested. If a
nested program completes execution, debugging can continue
with the origind program.

When Execution Is Stopped

Program execution can be stopped by pressng the Quit key or
when a bregkpoint is encountered. When execution is stopped,
it is possble to show and set variables, to execute the program
or one of the functions defined insde the program, to set and
clear bregkpoints, or to initidize the debugger. The debugger
a0 stops execution when a fault is reported to the user. When
the fault window is displayed, only the FAULT softkey (F10) is
available. Pressing the FAULT softkey toggles the fault
window on and off and leaves the program stopped.

When execution is stopped, the debugger sees variables from the
perspective of the block containing the statement marked by the
execution pointer. If execution is stopped a a statement insde a
function or handler block, the debugger can set and show vaues
only for the variables that are declared within that block, not the
encloang block. Other functions defined insde the program
may be executed if they are not masked by a locd variable
declaration with the same name.

4-11

Execution may be resumed by pressng the CONT softkey, or
the next statement may be executed with NEXT or STEP.

Stat a nested execution by pressing the EXEC key and entering
the name of a program or function to be executed. When that
program or function completes execution, the debugger returns
to the point a which you were origindly stopped, and you can
continue debugging the origind program.

When an Error Occurs 4.6.2.

4-12

If an eror occurs in the executing program, execution is
interrupted and the line containing the error is marked by the
execution pointer. Because an error occurred, execution cannot
be resumed with STEP, NEXT, or CONT. However, you can
usudly set and show variables or execute the program or one of
the functions defined insde the program. Some errors result in
more serious trouble for the debugger. These errors are caled
fatad errors and cause execution to end. After a fata error, the
following message will be displayed if you atempt an illegd
operation:

Cannot run program after a fatal error.

If the program that is being debugged cdls another TL/1
program, and an error occurs in the caled program, the display
is updated to show the caled program.

Another type of error that can occur when a program is cdled is
a TL/1 compiler eror. If the caled program has not been
compiled, the debugger compiles it before attempting to execute
it. If a compilation error occurs, the display is updated to show
the point of the program cdl and the compiler error message is
displayed. At this point you should exit the debugger, edit the
cdled program, and fix the error.

O Debugging Programs 4.6.3.

Setting Breakpoints

A breakpoint may be set on any executable statement.
Declarations, comment lines, and blank lines are not executable
datements. The firg line of a program, function, handler, or
exerciser block is not executable ether.

Gaining Control of Program Execution

Normdly, if you sart the debugger and begin execution with the
EXECUTE softkey, the program is run without pause, as it
would run from the operator’s interface. This does not provide
much assgance in debugging. However, it is easy to get
control of the program by setting a breskpoint early in the
program, ether a the firsd executable Statement or after
initidizing functions are peaformed (but before the Statements
you wish to examine). You could dso watch ether display for
~ output that indicates the progress of a program. When execution
O seems to have progressed far enough, you can press the Quit
key to stop the program. This is less precise than setting
breakpoints but can be effective on long programs that
frequently send output to the displays.

413

Multiple Statements

If a breskpoint gppears on a line containing multiple statements,
the breskpoint is encountered only once, before the first
statement is executed. If you press the STEP or NEXT softkey,
execution will continue through the res of the line without
pause.

Setting and Showing Variables

The execution pointer indicates the next Statement to be
executed. This Is important to remember when examining
vaiadles in an assgnment statement. Suppose you wish to
examine the effect of this Satement:

n = val (stringvar)

If you st a breskpoint on that line, when execution stops you
see!

Bl n = val (stringvar)

The debugger is ready to execute this statement. If you show
the vdue of n, it will be the vaue exising before the assgnment
takes place. Then if you press STEP or NEXT, the assgnment
will occur and the execution pointer will point to the next
satement to be executed. At that point you can show n to see
the effect of the assgnment dtatement.

Debugging Blocks Within Programs 4.6.4.

Debugging If Blocks

4-14

When TL/1 encounters the if command, it evauates the
condition for the first block of controlled statements If the
condition is fase, the second condition (supplied by an dse if
command if any) is evaduated, and s0 forth. As soon as TL/1
finds a condition that is true, the first statement in that controlled
block is executed.

When TL/1 encounters an else if command or an else command
after executing the statements in a controlled block, TL/1 knows
the end of the controlled block of statements has been reached.
Execution continues with the firs statement past the end if
command.

A breskpoint at an if command will stop execution before the
condition is evauaed. To determine whether a given branch of
the If has been taken, a breakpoint should be set on the first
satement of the controlled block, not at the if, else if, or dse
command.

Debugging Loop Blocks

A breakpoint at the |oop command will stop execution before the
loop is entered. A breakpoint at the first controlled statement
will stop execution a the beginning of each iteration of the loop,
and a breskpoint at the end loop command will stop execution at
the end of each iteration.

Debugging Functions

To %%t control of the debugger ingde a function, a breskpoint
can be placed on the firs executable statement of the function.
Or, you can et a breskpoint at the statement where the function
is invoked. Then, when execution is stopped, press the STEP
softkey to single-step through the function. Pressing the NEXT
softkey would execute the function completdy, without pause
(unless a breakpoint is encountered while executing the
function).

If an error is found when debugging a function, execution of the
function cannot be continued. You can 4ill set and show
variables or cdl another function defined insde the program.

4-15

Debugging Handlers

To get control of the debugger inside a handler, a breakpoint can

be placed on the first executable statement of the handler. Or, if
the handler is to be invoked through a TL/1 fault statement, you
can sat a breskpoint on the line containing the fault satement.

Then, when execution is stopped, press the STEP softkey to

sngle-step through the handier. Remember, since handlers for a
paticular fault condition can be defined within different program
and function blocks, more than one handler may be avalable
when a fault statement is executed.

It is not possble to debug fault condition exercisers usng the
debugger. However, they may be patidly tested by temporarily
changing them to functions and adding a cdl to the function
gther in the fault handler or following the statement that raised
the fault.

Debugging Chained Programs 4.6.5.

4-16

In a fully developed system of test and troubleshooting
programs, one program often cdls another, creating chains that
can grow quite complex.

The VIEW softkey is useful for displaying caled programs and
setting breskpoints in cdled programs. The STEP softkey is
useful for following execution into and out of cdled programs.
The SET and SHOW softkeys are useful for examining variables
when execution is stopped in a cdled program.

It is recommended that you firg compile dl the TL/1 programs
before attempting to debug a large st of programs. This dlows
you to find and fix dl the compilation errors before beginning
the debugging sesson. It dso ensures tha your debugging
sesson is not interrupted by compilation erors. Usng the
debugger to find compilation errors is not recommended. It is
much easer to compile al the programs in advance, find, and fix
al the compilation errors before garting the debugging sesson.
To compile dl the programs in a UUT, edit the UUT, and press
the COMPILE softkey.

O Section 5
Guided Fault Isolation
(GFI)

INTRODUCTION 5.1.

This section introduces the 9100A/9105A Guided Fault Isolation
(GH)troubleshooting utility. The materid assumes that you ae
familiar with the 9100A editor and TL/1 programming concepts.

The following features are described:

™
(‘J . The basc GFl dgorithm.
® 9100A/9105A enhancements to GFI.
. GFl database and stimulus program reference.
. UFl (Unguided Fault Isolation).
J How GFI differs from UFI.
. Using GFl at the operator interface.

Functiond tests determine whether a UUT performs as intended
and therefore indicate whether or not it is functiond. If a UUT
fals a functiond test, the test results generdly cannot tdl you
how to repair the UUT. If you wish to find out why the UUT
faled, you must troubleshoot it.

5-1

5-2

GFIl is a troubleshooting procedure, implemented in the
9100A/9105A by a built-in program that directs the operator
through aseries of steps to locate the cause of UUT failure. The
program uses a GFl algorithm to backtrace from a bad output to
the responsible fault.

The GH program is generd enough to troubleshoot any digita
circuit. To apply GH to a particular UUT, you must supply
UUT-specific information to the GFl database. Once you have
stored the database in the UUT directory, an operator can use
GFl to troubleshoot the UUT without much knowledge of its
functiondity. The operator has only to follow the directions
displayed by the GFl program.

Some examples in this section are designed for an 80286
and the Demo/Trainer UUT (available as an option from Huke).
Even if you do not have this option you will find it useful to
study the examples; they can be applied to other UUTs.

NOTE
In this section, “ components’ refers to parts such as

ICs on the UUT. “Devices’ refersto 9100A/9105A
attachments such as the probe or an I/O module.

O

THE BASIC GFI ALGORITHM 5.2.

GFl locates UUT faults by backtracing from a bad output until it
finds the fault. GH consders a fault located when it finds a
componentaccepting good input but producing bad output. The
component could be bad, or its outputs loaded. Loading is often
due to a bad connection that is (incorrectly) stuck a one level or
tied to another signd.

GFl dso condders a fault located when it finds an open circuit: a
connection where the measured response is good a one end but
bad at the other.

The following example demonsrates the GFl backtracing
process. The circuit of Figure 5 represents a portion of a
UUT with a fault a point A, a short to ground. When you
perform the functiona test for this portion of the UUT, the test
should fall with a bad output a point B.

To begin backtracing, fird verify that the output a point B is
bad. You execute a simulus (typicdly a combination of read
and write commands) from the operator's keypad and observe
the response at point B using the probe. With knowledge of the
UUT logic, you can decide whether the response indicates that
the circuit is performing correctly. A correct response
contradicts the result of the functiond tet, and you must
question whether the stimulus adequately reproduces conditions
that caused the circuit to fail.

5-3

5-4

U4

i~ @

uto

u24

Figure 5-1: Example UUT Circuit with Fault

‘ Once you verify that the response at point B is incorrect, you
() follow these steps to locate the fault:

1. Veify tha the 9gnd is dso bad a the output pin,
U24-9.

2. Check each input to U24 by applying a stimulus for

each input and observing its response. U24 has two
inputs, a pins 2 and 4.

3. Asuming tha you firgt check the input a U24-2 and
find it good, you should then check U24-4.

4. The input dgnd a U24-4 is bad; according to
Figure 5 the input originated a U10-15.

5. When you probe U10-15, you will find thet the
ggnd is bad. You have therefore diminated the

chance of an open connection between U10-15 and
U24-4,

. 6. The input sgnd a U10-2 is bad; according to
O Figure 5- 1 the input originated a U4-10.

7. Check the inputs to U4. They are al good so &t this
point backtracing stops, having found that U4
accepts good inputs but produces bad output. The
result suggests either that U4 is bad or that its output
is loaded.

If U4 is defective, it can be replaced. If its outputs are loaded, a
little thought is necessary. Loading may be caused by a short

(asin this case), a bad component connected to U4-10, or a bad

control line on a component connected to U4-10, At this point it

should take little time to check al posshilities until you find the
ghort a A.

This backtracing method is the bass of the GH dgorithm
illusrated in Fgure 52. GFl dats with a bad sgnd and
locates the immediate source of the sgna. GFI then checks
each input of the source for more bad dgnas. As long as it

5-5

Probe input to

A

component
with bad output

All inputs
probed?

Input good?

Backtrace to Component is bad
source of or has loaded output.
bad signal

Bad signal
source?

Open circuit between
good output and bad input

Figure 5-2: The Basic GFI Algorithm

O

finds bad input signds, it will backtrace to the source of the
signal and check the source for bad inputs.

ADDITIONAL GFI FEATURES 5.3.

GH is a vay effective dgorithm which locates faults in dmost
any digitd dectronic crcuit. The 9100A/9105A uses the
enhancements discussed in the following sections to reduce the
time needed by GF to troubleshoot a circuit.

The /O Modules 5.3.1.

GH dgorithm efficiency is sgnificantly increesed if dl pins on a
UUT component can be probed smultaneoudy. The 1/O

modules were designed for this purpose. They are connected to
the ICs by adapters of various szes. The operator, when

prompted by GFI, uses the adapter to clip over the IC to be

tested.

Using 1/0O modules reduces the chances of probing the wrong IC
pin, and avoids the need to probe the same IC more than once.
Since many pins of an LS chip may have to be probed during
one backtracing operation, the time saved can be subgtantial.

More information on the I/O modules and the use of the

/O MOD operator's keypad command can be found in the
Technical User's Manual.

o-7

Probing Inputs before Outputs 5.3.2.

5-8

Experience has shown that reaively few faults are caused by
bad connections. We can therefore usudly assume that if an
input is bad, the output driving it is dso bad. One of the easest
ways of reducing backtracing time is to use this assumption and
initidly probe only IC inputs

Figure 53 shows how initidly probing only inputs can save
time. In the example, (2n + 3) probes would be needed to
diagnose the bad node by probing outputs and inputs. By
probing only inputs, we reduce the number of probes needed to
(n+ 4).

Once a fault has been tentatively diagnosed, you must verify the
initidl assumption that there was no bad connection. In this
example, a final probing of pin Ul-12 would verify the
assumption that UI-12 and U2-3 are connected.

Good 1
Good 2
Good 3 ut 12 _Bad 3 U2 e = e B
Good 4
—————— —] Un-1 Bad Un |5 Bad

Figure 5-3: Benefits of Probing Inputs before Outputs

5-9

Related Inputs 5.3.3.

5-10

Rdated inputs are the pins that should be examined if an output
pin is bad. These pins afect an output pin or a bidirectiond pin
when it is acting as an output. Power and ground connections
are not related inputs, but they can cause an output pin to fal, so
they are dways tested when an output is bad.

In Figure 5-4, related inputs to U7-3 are U7-1 and U7-2. If U7-
3 is bad, GFI probes only U7-1, U7-2, and power and ground
connections, ignoring other inputs.

U16 in Figure 54 is a component whose inputs have been
prioritized. According to the table, if output 02 fals, inputs are
probed in the following order: Enable, Sdect, A2, B2, Vcc, and
ground. It is not necessry to li Vec or ground; they will be
checked automatically as the lowest priority pins. Backiracing
continues from the firg input found to be bad. If they are dl
good, U16 is bad or has loaded outputs.

The rdated input pins are specified in a lis. You can control the
order in which they are probed liging them in the desired
order. The highest priority pins should be lisged fird and the

lowest priority pins lad.

If no related inputs are specified for a pin that has a bad output,
GFI will begin probing the component’s inputs in the order of
their pin numbers.

u7

vee LYY 45V

11

uUl6
1] .Al vee 200+5V
2 kA2
31§81 01 |8
_41]B2 02 |7
10 | Gnd
= Enable Select

U16 Output | Related inputs, highest priority first

02 5,6,2,4, 20, 10
(Enable, Select, A2, B2, Vce, Gnd)

01 5,6,2, 4,20, 10
(Enable, Select, A2, B2, Vce, Gnd)

U16 Related Input Priorities

Figure 5-4: Related Inputs and Their Priorities

5-11

Leapfrogging 5.3.4.

5-12

In Figure 55, if U6-10 is bad, a programmer may know from
experience that the bad output originates severa components
away on the backtracing path at U3-2. Considerable time can be
saved by jumping directly to the suspect component. This
cgpability, cdled legpfrogging, is accomplished by specifying
priority pins in the dimulus program response files. In Figure
5-5, U3-2 might be specified as a priority pin.

If GFI finds that U6-10 is bad, it will jump to U3-2, avoiding
intermediate components. If U3-2 is bad, then the fault mugt lie
even further back on the path; backtracing will therefore resume
from U3-2.

If U3-2 is good, GH will return to U6, where it will test related
inputs of UJ6-10. The related inputs are tested in the order of
ther priorities. If U6-10 has no rated inputs, dl inputs to U6
are tested in the order of their pin numbers.

2 9 1 10

6 10 4 -
3 u3 u4 5 U6

_—— 8
:W\
If defective Priority Related inputs, in order of
output is: pin is: priority (highest first), of U610
Us-10 Us-2 ue-1, Ue-4, Us-5, Us-8

Figure 5-5. Priority Pins

5-13

Feedback Loops 5.3.5.

5-14

The GH backiracing agorithm is successful for mogt digita
circuitry where logic paths are draight lines However, some
logic paths are circular rather than straight. Such paths are called
feedback loops.

Figure 5-6 shows a feedback loop. U6 receives input from U4,
and U4 recaives input from US; this much of the path is straight.
However, U8 receives input from U6, creating a loop.

If a loop is defective, none of its components will receive input
that is al good. A component can be cdled “bad” only if it
accepts good input but produces bad output. Therefore, a
component cannot be consdered bad while forming part of a
feedback loop.

If a bad output is found a C, GF will backirace from U6 to U4
to U8 and then encounter U6 again. At this stage GFI will
redize that it has found a loop and will try to establish that the
cause of the fault lies outsde the loop. It does so by testing dl
inputs to the loop from components outside the loop (inputs A
and B). If GFl finds that one of those inputs is bad, it will
continue backtracing from the bad input to components outside
the loop.

If dl inputs to the loop from outsde are good, GFI will display
a message indicating that there is a bad feedback loop and will
list the output pins comprising the loop. For Figure 5-6, this list
would be U6-3, U8-3, and U4-2.

9 From component
outside the loop

................... 00000000000 ITE000000000A00RERRRIRRIRRRNEY sesscssessscssecrcrsecey

: ;
i 1 3.7
vocesefon, S
o.. P
’I‘,H 3 ““““““““ ! R) ¢ 4447 ¢
us » ud » U6

% Bad output

o TO COmponent
* outside the loop

From component esssrscceseses Indicates a feedback loop

outside the loop

Figure 5-6: Feedback Loops

5-15

GFI DATABASE OVERVIEW 5.4.

With GFl, troubleshooting becomes a routine matter of moving
a probe or an 1/0 module adapter to locations on the UUT as
prompted. An inexperienced technician can troubleshoot a UUT
without knowing how it works because you, the programmer,
gavag previously stored UUT-specific information in the GFl
atabase.

The Database and Stimulus Programs 5.4.1.

The compiled GFI database contains the following types of
items:

¢ Pat descriptions.

. Reference designator list (REFLIST).
. Node list (NODELIST).

¢ Stimulus program responses.

In addition to items in the database, GFI requires a set of TL/1
stimulus programs. The programs are used to generate the
stimulus program responses stored in the database. Stimulus
programs are stored aong with other programs. Each stimulus
program should have a corresponding stimulus program
response file.

The stimulus programs and al items in the GFI database (except
for the part descriptions) are stored in the UUT directory. Part
descriptions are stored in a part library (PARTLIB) and can be
used for any UUT.

Items associated with the GFl database are described on the next
page and (in more detail) in the “GFI Database Reference”
further on in Section 5.

Part description: A UUT component description that
identifies the package type, number of pins, and functions
of each pin (such asinput or output). The related input
pins are identified for each output.

Descriptions are stored in a UUT, or in a part library
(PARTLIB). Descriptionsin the PARTLIB can be used
for any UUT. Thus, you do not need to enter the same

description into the database for every UUT that uses the

part.

Reference designator list (REFLIST): A pairing of
the name (reference designator) of each component on the
UUT with a part description from the part library. For
example, U5 may be a designator for the part 7400, whose
description is stored in the part library. The device needed
to test the part is aso specified.

Node list (NODELIST): A description of all UUT
nodes. A node is a group of pins connected to each other.
All pins forming a node must be identified.

Stimulus programs. TL/1 programs that exercise UUT
nodes. For example, a data line stimulus is a sequence of
read and write commands, which cause the UUT to
transmit signals over the line. The responses caused at a
node by a stimulus can be measured and analyzed.

GFl uses a stimulus to check a suspect node, comparing
its response to that previoudy obtained from a good node.
A stimulus must be available for each node. Y ou need
enough knowledge of the UUT logic to design stimuli that
thoroughly and accurately exercise al nodes on the UUT.

5-17

¢ Stimulus program responses. The responses
characterizing a known-good UUT. Responses have an
important role in GFl, linking a stimulus program to the
nodes that the program tests. A response file identifies the
nodes exercised by a stimulus program, and contains deta
characterizing each node. A node is characterized by using
GFl LEARN to collect response data from that node on a
known-good UUT. Response data can be CRC
sgnatures, asynchronous level histories, clocked leve
higories, and trangtion counts or frequency data GFI
compares response data from a tested node to data stored
in the response file to determine if the node is good.

In GHl, each stimulus program is pared with an identicaly
named dimulus program response file for example, the
response file dma_circ contans responses to the stimulus
program dma_circ. A gimulus program may exercise
severd UUT nodes. Each node should be described by a
line in the corresponding response file The line should
identify the node being exercised, specify its priority pin
(if any), and display the response data chosen to
characterize the node.

How GFI Uses the Database and Stimuli 5.4.2.

The table in Figure 5-7 summarizes how GH uses the database
and stimuli to test a component and generate probing
suggestions if the component has bad output.

Condder the example of Figure 55; if we specified that pin
U6-10 was to be tested, GFl would:

1. Look in REFLIST to determine the device (probe or
I/0 module) to test U6 with. GH then prompts the
operator to probe or clip U6.

2. Look in NODELIST to see what other pins are on the
same node as U6-10.

5-18

Determine dl wuitable simuli. GH searches for
dimulus program response files specifying (es a
node signa source) U6-10 or a pin on the same node
as U6-10. Suppose the response file named
addr_out ligs responses for node sgna source
U34-1. If U34-1 is on the same node as U6-10,
then the stimulus program named addr out is sliteble
for testing U6-10 as an input.

Apply dl suitable simuli by executing dl rdevant
dimulus programs. In sep 3, if it was found thet
dimulus programs addr-out and micro-data
exercised U6- 10, both are executed.

Determine whether the node is good or bad. In step
4, as each simulus program is executed, responses
a U6-10 ae compared to those sored in the
corresponding response file.

If step 5 shows U6-10 was bad, and if the simulus
program response file specifies a priority pin, then
GFl would recommend probing at the priority pin.

If step 5 shows U6-10 to be bad and if no priority
pin is specified, then GFl would look & the part
description and recommend probing related inputs in
the order that they are listed.

5-19

Nhen Look at: (TYPE) In order to:
‘esting pins | REFLIST REF Determine the testing device
t a specified for the pin; prompt the operator.
>cation
NODELIST NODE Determine suitable stimulus
programs:
« Checkwhich pins are on the
same node.
Stimulus RESPONSE | . Find all the stimulus programs
Program which use, as signal sources,
Responses the pin under test, or any other
pin on the same node.
Stimulus PROGRAM Execute all suitable stimulus
Programs programs.
Stimulus RESPONSE | Determine whether the pin is
Program good or bad by comparing
Responses responses to those stored in
program response files.
3enerating Stimulus RESPONSE | Suggest priority pin, if specified.
suggestions | Program
Responses
REFLIST REF Suggest related inputs at the
component of steps 1-5, if
Part PART priority pin is unspecified or was
Descriptions not a useful hint.
Stimulus ‘ .
Program RESPONSE gfugggitl bna:Iktraoklng 1o source
Responses gnail.

Figure 5-7: How GFI Uses the Database and Stimuli

() GFI DATABASE REFERENCE 5.5.

This section is areference for the following items, some of
which were described in the “GFl Database Overview” located
in Section 5.

* Pat library (PARTLIB).

¢ Pat descriptions.

¢ Reference designator list (REFLIST).
* Node list (NODELIST).

* Stimulus programs.

. Stimulus program responses.

The compiled GFI databaseconsists of part descriptions, a
reference designator list, a node list, and stimulus program
response files. You can create or modify each of these files by

using the editor. GFl aso uses stimulus programs, which are

not included in the database itself.

When you first create a UUT directory, it is empty. The editor
pr}gwdes_ a framework for entering or editing each type of UUT
Information.

Developing stimulus programs and stimulus program response
files requires a thorough knowledge of the UUT logic.
However, creating part descriptions, reference designator lists,
and node lists mainly entails data entry and can usually be
performed by a less skilled user.

Creating a GFI database involves:

¢ Describing the circuit by creating REFLIST, NODELIST,
and updating PARTLIB if necessary.

® Writing stimulus programs and storing them.

¢ Learning responses from a known-good UUT and storing
them in stimulus program response files.

¢ Compiling the GFI database.

5-21

¢ Generating a summary of the GFI database, which
analyzes the GFl test coverage.

Part Library 5.5.1.

5-22

Figure 5-8 shows a screen from the 9100A’ s standard part
library. Each item in the part library is a part description, which

can be accessed by any UUT's GFI database. Y ou can modify
the existing descriptions or add new ones as described in

“Entering a Part Description.” further on in Section 5.

The information window includes the following fields:

. NAME: The name PARTLIB. This field cannot be edited.

* DISK FREE: The amount of disk space that is still
available. This field cannot be edited.

¢ DESCRIPTION: An optiona oneline description of the
part library.

Below the information window is a listing of the names of all
part descriptions contained in the part library.

DISK FREE: 18,399,232 BYTES

Parts (PART}:
2016
4000

7400

74113
74125
74133
7415

74160
74166

PRESS A COMMAND KEY OR HELP KEY
DIRECTORY OF PARTLIB (LIBRARY?}

2674 2675 2681 27128 27256
4164 7400 7401 7402 7403

7408
74087 74009 407 74081 74112
74114 7412 74121 74122 74123
74126 74128 7413 74131 74132
74134 74138 74139 7414 74148
74150 74151 74153 74157 7416
74161 74162 74163 74164 74165
7417 74175 7420 7421 7422
7424 74244 74245 7425 74257

_7431 74
p———]]
coPY EIT GuIT

Figure 5-8: Standard Part Library

5-23

Part Descriptions 5.5.2.

5-24

Part descriptions for SIPand DIP packages, are shown in
Figures 59 and 5-10, respectively. Each part description will

contain data about one type of component, such as a 2114 IC, or
an 741.84148 IC, or a resistor. The Part description fields that
a:c? active depend upon whether the information window is on or
off.

I nformation Window on:

¢ NAME: The part identification. This field cannot be
edited.

¢ NO. PINS: The number of pins on the part. The number
must be in the range 1 through 255.

¢ PACKAGE: The package type for the part. Use the Field
Select key to set thisfield to either SIP (Single In-line
Package) or DIP (Dual In-line Package). Any part that is
not a Dua In-line Package should be specified as SIP.

. DISK FREE: The amount of disk space that is still
available. This field cannot be edited.

¢ WRITE PROTECT: The write-protection status of the file.

Use the Field Select key to set this field to YES to specify
write protection for the file. If the file is write protected,

the editor prompts you when the file is saved to ensure that
changes are intentional. If the file is not write protected,
you will not be prompted. A change in write-protection

status does not become effective until after you save your
current edits.

The NO. PINS and PACKAGE fields define how DIP
component pins are mapped to 1/0 module pins. The mapping is
performed during GFI. For SIP components, the probe should
be used for GFl.

DIGK FREE: 521 984 BYTES

ND. PINS: 6
PACKABE: SIP WRITE PROTECT: NO

L0 00 ~J € KT B () 1D s

LA A e At S A

PIN MAWE PRELATED INPUT PINS

2l —
3l -
il o
5l —
B
7|
8l —
3]
1 —
1| —
12| —
13 —
4l —
15| —
15 —

GOT0 SAVE

Information Window Off

Figure 5-9: SIP Part Description

5-25

BISK FREE:

628,224 BYTE!

URITE PROTECT: YES

— 11 14] Pur
— {2 13| —
TTRE —
— |4 Ny
- 5 —
1,2,4,5 — & —
BND |7 — 5,16,12,13

PIN RELATED INPUT PINS

PIN HAME RELATED INPUT PINS

FELATED INPUT PINS PIN NAME

g —» 11 14} PR
— 12 13
UM {3 12]
— 14 11
— |5 10| «
1,2,4,5 — B 8 «
BND |7 8] — 9,10,12,13

PIN RELATED puT PINS

F4
HARK.

5-26

Information Window Off

Figure 5-10: DIP Part Description

Information Window off:

Pin type fidd: Specifies the function of each IC pin
according to the guiddines laid out in Figure 51 1. The
fidds are initidly sgt to a default sate. To change a pin
fidd, move the cursor next to a pin number on the IC
figure and use the Field Sdect key to change the fidd.

PIN NAME: The name of the pin. This fidd is typicaly
left blank and is only used for components that use names
rather than numbers to identify pins. For example, a
connector may label one row of pins “d” through "al2",
and the other row of pins “bl” through "b12".

If a component uses pin names, a name must be specified
for every pin. The 9100A/9105A will not recognize pin
numbers for these components. Use the pin name in the
node ligt, response files and with GFl.

RELATED INPUT PINS: Rdated inputs are the pins that
should be examined if an output pin is bad. These pins
logicdly affect an output (or a bidirectiona pin when it is
acting as an output). When GH finds a bad output pin, it
uses this lig to determine where to probe next. Related
inputs are specified for each output, including status lines
and bidirectiond lines.

As a default, the 9100A/9105A assumes that dl the input
pins and bidirectiona pins ae rdated inputs. It further
assumes that they should be probed in ascending order,
based on pin number. If these assumptions are correct for
a paticular output pin, this fidd can be left blank.

However, for some pins this assumption is incorrect. For
example, on a 74LS00, the ligt of rdaed input pins for pin
3 should be limited to pins 1 and 2. If you wish to regtrict
the sat of rdated input pins to some subset of the default
ligt, or if you want to change the order in which the pins
are probed, you should enter a list of related input pins.
Lig the pins in the order that they should be examined
(i.e., the highest priority pins first, and the lowest priority
lest). It is not necessary to list power and ground pins as
related inputs; the 9100A/9105A assumes this.

5-27

5-28

If an output (such as a microprocessor pin or edge
connector pin) has no related inputs, you should type a
zero into this fidd. This will force GH to immediatey
make an accusation involving the pin when it finds thet it is
bad.

To specify rdaed inputs, move the cursor horizontaly
away from the pin fidd and type in the pin numbers of
related inputs, separated by commeas. If there are too many
related inputs for one line, you should move the cursor
below the IC figure to the PIN fied and type the pin name
or number. Then move the cursor to the RELATED
INPUT PINS fidd and type in the list of relaed input pin
numbers. The extra rlated pins appearing below the IC
figure are treated as a continuation of the rdated pins listed
a the sde of the IC. If desred, dl rdaed input pins may
be listed below the IC figure.

Pin Field Pin Function

(In Part Description) (from Data Book)
1 je— Input
2 ¢ Control
3} —r Output
oM, o[sus
Description 5 fg—p Bidirectional
6] GND Ground
7} PWR Power
81 UNU Not Connected
91 UNU No Function

Figure 5-1 1: Specifying Pin Functions in a Part Description

5-29

2114 Example

5-30

The following figures show the block diagram, pin layout, and
logic symbol for a 2114 RAM chip. Each memory location is
addressed by lines Ao through As, which are therefore inputs.
Data is written to or read from an address on data lines 1/0
through 1/0., which are therefore bidirectional pins. The CS
(chip select) and WE (write enable) control lines are also
considered inputs.

A3®—-m
o o
®
L Ea—— row | - MEMORY ARRAY
"o ol R
A7@—-—[X
mCE——
. 1 I
"o'@ E | VO QRCUNTS
io2 E o COLUMN SELECT
®@ ROL
103 I r— —Tt
vos i @Ao ®A1 ®Az @As ‘ i
P
@ i
=9

(5) = PIN NUMBERS

2114 Block Diagram

(This page is intentionaly blank.)

5-31

5-32

— AO U

As []1 18 [] Vee
—| A4 0y f— As []2 17 [] As
—| A2 A s 16 [] As
e Vo Ty — As [4 15] Ao
—| A, o Os 21144 4 1o,
—| As Ay 6 13 [P}
—| As O3 | Ay 7 12 1103
—| A7 Cs 8 11 104
_ :: 10, |— GND g 10 WE

WE CcS
2114 Logic Symbol 2114 Pin Configuration

Figure 5-12 shows what the 2114 part description should ook
like. Since bidirectiona pins 1/0: through I/0s sometimes act as
outputs, related inputs should be entered for them.

For example, the related inputs for 1/0. (pin 11) are determined
by first locating all inputs that could affect the data at pin 11.

The previous block diagram shows these inputs to be Ao through
As, CS, and WE. Next, arrange the related inputsin the order
you would check them if you found bad data on pin 11. CS and
WE are the most important lines: if either is bad, these lines
should be checked out regardless of the state of the address line.

Thus, the pins are listed in order: CS, WE, and then the address
lines. In Figure 5-12, the related inputs were too long to fit on
one line so the line was continued below the symbol of the IC..

joHAED 2114 DISK FREE: E£28,224 BYTES
| NO. PINS: 18
| PACKAGE: DIP WRITE PROTECT: NO
— |1 18] PR
=2 17 «
13 1B «
—3 |4 15| «
— |5 1] & 8,10,15,18,17,1,2,3
— 16 13| & 8,10,15,165,17,1,2,3
— |7 12| & 8.10,15.16,17,1'2'3
— 8 1] & 8,1¢,15,18,17,1,2.3
9 18]

(2]
4
L)

RELATEDINPUT PINS

Information Window On

RELATED INFUT PINS PIN NGHE

GND

PIN NAHME RELATED INPUTPINS

e
L=
T3
£
=i

LLLLllll

TIITTTT

PIN RELATEDINPUT PING
14 4,765
13 4,785
12 4,7,8,5
11 4,755

PASTE

Information Window Off

Figure 5-12: 2114 Part Description

5-33

4034 Example

The following figures show some typicd applications, the pin
layout, and logic symbols for a 4034. The 4034 is an eight-
dage bidirectiond, pardld/serid, input/output, bus regiger. If
necessary, refer to a CMOS data book for details on its pin

DOUBLE-BUS SYSTEM

(ENABLE INPUTS ON BOTH SIDES)
r===""""==q l
' 1 L PIS AE fo— —» AE PIS PSS AE
] — 1 1 v 1 1
[f—af 2 2 2 2 2 2,
i wemory 3| WREG s 3| XmREG | 3| wanes |3
) UNIT te—of 4 4 4 4 4 4
| H B A A 8 8 A TO SECOND
; e . . . : 317 |mus'svsTem
) o
: :,_, 7| CDs034 |, 7| ©D4034 r 7 7
1 o8 8 8 § 8 8
1 1
[4 St ABAS CL SIABAS CL

i

]

]

|

:

t PERIPHERAL

] UNIT

\

)

i

1

[)

1

1

| P J

THE *A* ENABLE (AE) AND A/B SIGNALS CONTROL BUS LINES
HighE SONNRENG(E TsFERBETWEEN (SNGLE)

Single- and Double-Bus Application

5-34

Voo Voo
YN YY! 1 1iLiitil
AE 1 D AE 1 8
\.“A" PARALLEL DATA/ \.“A- PARALLEL DATA/
SERIAL DATA —{ SI st
Vpp Smmeed B Vpp «-{AB
— Jas CD4034 = Mas CD4B4
o CL o Cl
B PARALLEL DATA “B" PARALLEL DATA
st h SERIAL Xl 3 SERIAL
IRRERER RN IRREE R R I
Ps
as

CL

16-bit Register:
» parallel in/parallel out.
+ parallel inserial wt.

. serial jrvparallet out.
s serial in/serial out,

SAMPEMOLO— Y4 bbbl S

AE 1 8 AE —1
\.*A- PARALLEL DATA/ AB ——]
SERWL DATA —s{ §1 ws—]| STEERNG
Voo —{ AB P/S ~—1
s —i S CDd004 oL —
cLocK — CL
"B" PARALLEL DATA
ps—1 PEE Ve
e TO DISPLAY, ETC. - =
™ . -
£ Sample and Hold Register: -
» serial-parallel i/ —
parallel wt. g | sestaces ﬁ
par} 3
. B,
= b
-
s S al— —
mrL 2 - 4%"" o .
z-51s ztL g
e ale 2)
5 -4s B As 8s
[tof-4 &
L2 of2 3
s ” —fj Functional Diagram
“A"ENABLE —| @ 16+,
SERIAL INPUT — 10 15— CLOCK
AB—11 4 fp—AS
ves —] 12 13}—Fs
TOP VIEW
Pin Layout

The 4034 part description should be designed and entered like
the 2114 part description of the previous section. Figure 513
shows what the 4034 part description should look like.

C\
i
oo

5-35

P NRED A ~ DISKFREE: 628,224 BYTES |
| 0. PINS: 24
PACKAGE: DIP WRITE PROTECT: NO

UBEEMNNER

TTTITTLILLLE

316

8LLITITITLLL

PIN RELATED IHWTPINS

Information Window On

RELATED INFUT PING PIN HAME PIN HAME RELATED INPUT PINS

itk

B

TTTITITILLLS

ook e ke 0D [0 [0

2LILTITITILL

12 13

6010 SR

Information Window Off

Figure 5-13: 4034 Part Description

5-36

(This page is intentionaly blank.)

5-37

Pull-Up Resistor Example

5-38

The figure below shows a pull-up resistor whose leads have
been assigned pin numbers. Pin 2 is connected to +5 volts so

that pin 1 can provide a pull-up voltage at the output of a
semiconductor component.

+5V

ouT

Pull-Up Resistor (R) at Component Output

Figure 5-14 is the part description of the above resistor.
Resistors can be described in the same way as ICs: they are
two-pin SIP components. Each pin can be input, output, or
bidirectional, depending on current flow. Since pin numbers
must be assigned arbitrarily, the test or troubleshooting operator
shﬁuld be provided with Information describing the numbering
scheme.

DISK FREE: 628,224 BYTES

KABE: SIP URITE PROTECT: NO

PIN RELATED INPUT PINS

PIN RELATED INPUT PINS

Information Window Off

Figure 5-14. Pull-Up Resistor Part Description

5-39

Entering a Part Description 5.5.3.

5-40

The pat library (PARTLIB) contains component descriptions
that can be accessed by any UUT. A UUT can aso contain part
descriptions. If REFLIST specifies a part that is not in the UUT
or library, that part must be added to the UUT or PARTLIB.
For example, to enter a 7420 description:

1.

Consult a TTL data book to see what each pin does.
A 7420 is a dud, four-input NAND gate. You need
to know if each pinisinput, output, bidirectional,
round, power, or unused. Y ou also need to know
the related inputs for each output or bidirectiona pin.

Press the Edit key and type:
/hdr/partlib/7420

Press Return, select PART asthe TY PE field, and
press Return again to view the description, which
should appear with the information window on.

If this part description has aready been created, the
information window won't be displayed unless you
press the Info key. Pressing the Info key a second
time turns the information window off.

Type the number of pins (14) on the IC and specify
the package type (DIP) a the information window;
th](:n tkurn the Iinformation window off by pressing the
Info key.

IT:ype the related inputs for each output, and use the
leld Select key to specify each pin's function
according to the information obtained in step 1.
]If_igglJr(fa 515 shows the 7420 part description in its
inal form.

Press Quit and use Field Select to specify whether or
not to save your changes.

74LS20
DUAL 4-INPUT
POSITIVE NAND GATES

Vcce 2D 2c NC 28 2A 2Y
14 13} !12! !111I !10! ! 9 |l !T‘._

1 2 3 4 5 6 7
1A 1B NC 1C 1D 1Y GND

POSITIVE LOGIC: Y = ABCD

RELATED INPUT PINS PIN NAME PIN NAME RELATED INPUT PINS

— PUR
- —
UNU —
- UNU
- —
1,245 — -
GND — 9,10,12,13

PIN RELATED INPUT PINS

GOT0 SAVE

After Edits

Figure 5-15: 7420 Part Description

5-41

Reference Designator List 5.5.4.

5-42

Figure 5-16 shows an example reference designator list
(REFLIST), which pairs the names (reference designators) of al
UUT components with part descriptions from the part library
and with the device needed to test each component.

I nformation Window on:

NAME: The name REFLIST. This fidd cannot be edited.

DESCRIPTION: An optiona oneline description of
REFLIST.

DISK FREE, SIZE: The amount of disk space that is il

avalalle and the dze of the reference desgnator lis.
These fields cannot be edited.

WRITE PROTECT: The write-protection status of the file.
Use the Fidd Sdect key to st this field to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentiond. If the file is not write protected,
you will not be prompted. A change in write-protection
datus does not become effective until after you save your
current edits.

I nformation Window, off:

REF:. Enter a reference designator (such as U4 or J8) for

the UUT component referred to. A reference designator
can be from one to sSx characters long. It may include
only alphanumeric characters, underscores "_", and
periods "."., Also it must begin with an dphanumeric
character.

PART: Enter the name of the pat (such as 7400) that

corresponds to the reference designator. The part library
will need to contain a description for the pat with this
name.

TESTING DEVICE: The device (probe or 1/0 module) to

be used to test the component during GFl. Press the Field
Sdect key to change this fied.

CNAMED REFLIST S DTSR FREE: 397,696 BYTES

DESCRIPTION: _E SIZE; 258 BYTES
WRITE PROTECT: NO

Jt jack1s PROBE
uz4 8187 1/0 MODULE
u34 8228 1/0 MODULE
uz? 74139 PROBE
ull 2114 170 MODULE
ulld 2114 1/0 MODULE
ule 8255 1/0 MODULE
uzsb 8e8e PROBE
ri resistor PROBE
kmem key PROBE

TESTING
REF PART DEVICE
i Jjackls
u2d 8187
u3d4 8228 1/0 MODULE
1] 74138 PROBE
ull 2114 1/0 MODULE
ui3 2114 1/0 MODULE
ude 8285 1/0 MODULE
u2s 8080 PROBE
rl resistor PROBE
kmem key PROBE

GO0 SAVE

Information Window Off

Figure 5-16 Reference Designator List (REFLIST)

5-43

SIP components must be tested with the probe, but DIP

components can be tested with either the probe or an 1/0
module. If the 1/0 module is used, GFl will tes dl the

pins on the component whenever the component is

clipped.

Editing the Reference Designator List 5.5.5.

5-44

The reference designator li (REFLIST) contains a lig of
reference designators, the component each designator identifies,
and the device needed to test each component of a UUT. For
example, assume tha U99 designates a TTL 74L.S20 IC. To
add U99 to REFLIST for the UUT abc:

1

Press the Edit key and type:

/hdr/abc/reflist

Press Return, sdect REF as the TYPE fidd, and
press Return again. REFLIST should appear as
shown in Figure 5-17 “Before Edits”

Move the cursor to the bottom (blank) line and type
U99 into the REF fidd.

Press Return and type 7420 into the PART field.

Press Return and use the Field Sdlect key to sdlect
the TESTING DEVICE as the probe or 1/0 module.

Repeat steps 3 through 5 for subsequent entries,
when done, press Quit and use Fidd Sdect to
specify whether or not to save your changes. Figure
517 “After Edits’ shows the results of seps 3
through 5 on REFLIST.

St%)s 3 through 5 identify U99 as a 7420 PART. If the UUT
and PARTLIB (the part library) does not contan a 7420
description, the UUT or library must be updated by entering the

necessary part description.

TESTING
REF PART DEVICE
B3 74245 |/O MODULE
uig 74373 1/0 MODULE
u2 74373 110 MODULE
u22 74373 1/0 MODULE
uLs 82288 I1/0 MODULE
S5 connl |/O MOOULE
ui4 80286 1/O MODULE
JIC connl PROBE
SU3 switchl PROBE
JIR connl PROBE
su2 switchl PROBE
27 27256 |/O MODULE
u3 74245 PROBE

TESTING
REF PART DEVICE
23 74245 1/0 MODULE
U16 74373 1/0 MODULE
u2 74373 1/0O MODULE
u22 74373 1/0 MODULE
u15 82288 1/0 MODULE
J5 connl 1/0 MODULE
uld 80286 1/0 MODULE
JiC connl PROBE
SW3 switchl PROBE
JiA connl PROBE
SW2 switchl PROBE
27 27256 1/0 MODULE

u3 74245 PROBE
uss 7420

After Edits
Figure 5-17: Editing the Reference Designator List

5-45

Node List 5.5.6.

Figure 5-18 shows an example node ligt, which describes al
UUT interconnections.

I nformation Window on:

y NAME: The name NODELIST gppears in this fidd,
which cannot be edited.

° DISK FREE, SIZE: The amount of disk space that is ill

avalable and the dze of the node lig. These fidds cannot
be edited.

®* WRITE PROTECT: The write-protection status of the file.

Use the Fidd Sdlect key to st this fidld to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentiond. If the file is not write protected,
you will not be prompted. A change in write-protection
datus does not become effective until after you save your
current edits.

| nformation Window off:

* Each node fidd is one or more text lines, each lising the
pins connected together to form one node. Pin names are
Separated by or tab characters. Comments can be
insarted in e fiedds. As in TL/1 programs, precede a
comment with a "!" character. When you finish specifying
a node, press Return. When you do so, the editor checks
the line for errors.

5-46

[HAMED NODELIST

~OISK FREE:
SIZE:

628,224

1,017 BYTES

u?s-1 uZ2-14

4P5-35 uil-15 yi3-1g
u25-34 yii-16 ul3-16
u25-33 ull-17 ul3-17
4Z5-32 uii-1 uid-l
4?31 uil-Z ul3-2
uP5-38 ull-3 ul3-3
u25-29 uli-4 u13-4
u?5-27 u24-18

u5-28 y24-16

ufS-25 uzd-14

#masters
uf5-35 u?5-34 uf5-33 wlt-32
475-31 u25-3¢ udh-2d

h-38 ude-6
u2b-37 u22-15

u2o-40 uz2-13
u25-1 u22-14

u25-35 ull-15 u13-15
11z-34 ull-16 u13-16
u25-33 ull-17 u13-17
uzs-32 ull-1 ¢13-1
u26-31 uii-2 ui3-2
u25-30 ull-3 u13-3
u25-23 ull-4 ul13-4
uz6-27 u24-18

uz5-26 u24-16

uzs-25 u24-14

*masters
u25-35 uP5-34 u25-33 u2h-32
u25-31 u25-3¢ u25-29

= Ity = : Fe
MARK REPL

= Fi0 =

SEARCH CHECK

Information Window Off

Figure 5-18: Node List (NODELIST)

5-47

To use more than one line for a node, you can:

®* Type abackdash (\) character to end the firg line, and then
type on the next line.

¢ Continue typing a& the end of the firg ling the editor

insarts a continuation marker (>) a the end of the firg line

moves the cursor to the next line and insats another
marker (<) .

CHECK Command

The editor's CHECK command looks for errors in the node list.
CHECK indicates if a pin appears in more than one node.

Naming Bus-Master (*master) Pins

5-48

The screen’s lagt lines in Figure 5-18 show a *masters (star
maegters) entry. The entry ligts dl pins in the node ligt that are
“busmasters” A busmagter is a pin which can send data to
every other pin on the same node or receive data from every
other pin on the same node.

Figure 5-19 shows why U3-14 is a busmaster. U3-14, U12-1,
U13-1, U10-12, and U56-12 form a node. Information can
flow through the pins as indicated by the arrows, U3-14 is the
bus-master (the only one on the node) because it communicates
with al the other pins on the node.

Why is *masters necessary? Sometimes components that are
connected together do not communicate: the most common
examples are bus components, as in Figure 5-19. GFlI
determines data flow from the node list and assumes that data
can be sent from a pin to any other pin on that same node. In
Figure 519 the assumption is incorrect because the RAM,
ROM, and I/O communicate only with U3. The *master entry
alows GFl to decide which pins actudly send data to other pins.

Micro- 14 g
Processor |- 4 [Y
1 1 12 12
RAM 1 RAM 2 ROM 110
- U3 ul2 u13
u10
Arrows indicate possible signal directions; RAM 1,
RAM 2, and WO only send signals to the microprocessor
and not to each other. U3-14 is the bus-master (*master) pin.
U56
Figure 5-1 9: Bus-Master (*master) Example

5-49

The *masters entry is optiond; it is better to make the entry after
compiling the database once without it. The entry is hepful in
cases of nodes that:

. Are formed by three or more pins.

. Have two or more Sgnd sources.

Editing the Node List 5.5.7.

The node list (NODELIST)contains a list of nodes on the UUT.
A node is formed by the connection of two or more pins. For
example, in Figure 5-20, node A is formed by U23-3, U14-49,
and connector pins Ja25 and J5-49. To enter node A into the
node lig for UUT abc:

5-50

1.

Press the Edit key and type:

/hdr/abc/nodelist

Press Return, select NODE as the TYPE fidd, and
press Return again.

Move the cursor to the bottom (blank) line, and tyﬁe
the pins forming node A. Press the Return key at the
end of each line. The line should reed:

u23-3 jla-25 ul4-49 45-49

Repeat step 3 until Al nodes have been entered,

Use the CHECK command to ensure that a pin does
not appear in more than one node.

Press Quit, and use Fied Sdect to specify whether
or not to save any changes you have made.

Jla

u23

25

49

U4

a9 —

GOTO SAVE| MR PRSI REPL | SEARCH CHECK

u23-6 jla-22 ui4-43 j5-43

u23-8 jla-28 sw2-8 uld-39 j5-39

uz3~7 jla-21 y14-41 js-41

u23-9 jla-19 suw2-9 su2-11 ul4-37 j5-37

u23-5 jla-23 swe-7 yi4-45 j5-45

u3d-11 u27-11
u3d-12 u27-12
u3d-13 u27-13
ud-14 u27-15
u3-15 uf7-16
ud-16 u27-17
u3-17 y27-18
u3-18 u27-19

u23-3 jla-25 ui4-43 j5-49

The Node A, Entered into the Node List, on the Bottom Line
Figure 5-20: Editing the Node List

5-51

Stimulus programs are TL/1 programs used by GFl to exercise
UUT nodes in such away that the responses of nodes can be
andyzed and compared to responses of nodes on a known-good
UUT. The responses include CRC signatures, asynchronous
level histories, clocked level histories, and either a signal
frequency or the number of signal transitions.

Response data is gathered during program execution in an arm .
. . readout block. The stimulus should contain a sequence of
TL/1 commands that configures and synchronizes 9100A/9105A
hardware for response gathering.

Figure 5-21 shows an example stimulus program; note the TL/1
commands used to configure the response-gathering hardware.

I nformation Window on:

5-52

NAME: The name of the stimulus program. This field
cannot be edited.

DESCRIPTION: An optional one-line program
description.

DISK FREE, SIZE: The amount of disk space that is still

avallable and the size of the current program. These fields
cannot be edited.

WRITE PROTECT: The write-protection status of the file.
Use the Field Select key to set this field to YES to specify
write protection for the file. If the file is write protected,

the editor prompts you when the file is saved to ensure that
changes are intentional. If the file is not write protected,

you will not be prompted. A change in write-protection

status does not become effective until after you save your
current edits.

G

I This programis a sinplified exanple of a G-l stinulus program
I The stimulus programis designed to stimulate a node, while
I the node's response is captured with the probe or 1/0 nodul e.

! This program has two nmain parts. First, the response- gat hering

! hardware on the testing device is configured with the TL/1
reset,

! sync, threshold, and counter commands. Then the response-

I gathering hardware is activated, and the stinulus is applied.

I This program shows the TL/1 conmands that are used to configure
! the probe or 1/0 nodule to collect responses using external
sync.

program ext - sync

devlist = gfi device I get the device from GFl

reset device devlist | reset device to a known
I state

t hreshol d device devlist, |evel »tt1iv I set threshold Ievels

counter device devlist, mde "transition" ! set counter node

sync device devlist, node "ext™ I sync device to external

edge device devlist, start m4", stop "+", clock "+"
connect device devlist, start ®u3-1v, stop »u7-8+, clock vu4-8~
enabl e device devlist, node "always"

arm device devlist I start the response
I capture
rampdata addr SFOOOO, data 0, mask SF I apply the stimulus

rampdata addr SFOOOO, data O, mask $Fro
rampdata addr SFOOOO, data 0O, nask s$ro0
rampdata addr SFOOOO, data 0, nask $F000

I Check that signatures are conplete. Rai se a fault if they
I aren't.
status = checkstatus device devlist

if status <> SF then
if (status and 4) = 0 then

reason = "no valid start seen"
else if (status and 2) = 0 then
reason = "no valid enable seen"
else if (status and 1) = 0 then
reason = "no valid clock seen"
else if (status and 8) = 0 then
reason = "no valid stop seen"
end if
fault signatures-inconplete because reason
end if
readout device devlist I terminate the response

| capture

end ext-sync
Figure 5-21. Stimulus Program (ext-sync)

5-53

5-54

Information Window off:

A simulus program is Smply a program written for the specific
purpose of providing a simulus to exercise a UUT node.
Editing a dimulus program is identicd to editing any other
program. When writing or changing a line, the editor checks the
line for correct TL/1 syntax before dlowing the cursor to move
off the line. The CHECK command checks for syntax errors
which cannot be detected by the line check. The debugger can
be used to check the program’s logica operation.

Stimulus programs written for GFl should not use the assign,
clip, or probe commands. GH automaticdly prompts the
operator with the name of the reference designator or pin being
measured by the I/O module or probe. The stimulus does not
need to store or check the resulting response data, since GH
makes troubleshooting decisons based on data sored in
respponse files. The dimulus program must do the necessary
UUT initidization and the setup and control of measurement
hardware.

A dimulus program has two main parts. Fird, the measurement
hardware must be configured:

d For a program using pod sync, threshold and counter
commands should be used.

¢ For a program using externd sync, the sync, threshold,

counter, enable, edge, and connect commands should be
used.

After measurement hardware is configured, it should be
activated and the stimulus applied:

. The arm and readout commands should be used.

. For a program usng extend sync, the checkstatus

command should be used before readout, to ensure that
sgnatures are complete.

e

* The dimulus is typicdly a sequence of read and write

commands.

Stimulus programs should satisfy two very important criteria:

® The program mugt be independent, initidizing the UUT as
required. This is because GFlI can begin backtracing at
any node, and the gate of the UUT, prior to running the

dimulus, is unknown.

. During gimulus execution, only one pin should drive a
node: that is, during the period between the arm and
readout commands, one and only one pin should be a node
dgnad source. There are two reasons for this that are

explaned in the following examples

Example 1. Node A (below) is bidirectiond: ether Ul- 1 or
U3-1 can be signd sources. To exercise the node, two stimuli
are needed, one naming Ul- 1 as a source and the other naming
U3-1asasource. The reason is, thet if either pin is found to be
bad, GFl needs to know whether the pin is an output or an
input. If the pin is an output, GFl recommends probing that I1C;
if the pin is an input, GH recommends probing the source of

that input.

®

1-141

u1

@ Is a bidirectional node

us

5-55

Example 2: U10-4 in Figure 5-22 receives input from one
data line a a time. The source pin depends on the 1C addressed,
according to Table 1. If a stimulus program were to be written
(to test U10-4) that reads data from locations 8000 through
88FF, each pin (Ul-4, U2-4, and U3-4) would function as an
input to U10-4 a some time in the stimulus program. For this
reason, if U10-4 was found to be bad, GFI would not be able to
identify a unique source to backtrace toward. The solution is to
write three stimulus programs as shown in Table 2.

Writing Stimulus Programs 5.5.9.

5-56

Stimulus programs are TL/1 programs that exercise UUT nodes
in such away that their responses can be characterized by a
signature, a level, a count, or a frequency. Figure 5-23 shows
pod-sync, an example stimulus program.To edit the pod-sync
program:

1. Press the Edit key and type:

/hdr/abc/pod_sync

2. Press Return, select PROGRAM as the TYPE fidd,
and press Return again. The pod-sync_program
|eI§tI gg should appear on the screen, where it can be

Ited.

Typicaly when writing a stimulus program, you:

1. Study the UUT logic to decide what commands will
exercise the node(sc)J to be tested.

2. Enter commands from the operator’s keypad and
check the node's activity with the probe.

3. Repea step 2 until you have accumulated a sequence

of commands that exercises the node(s) thoroughly.
All inputs associated with the node should be in all

possible states during the test.

/E—,\ 4 o
—/ DO >
U1
¢
-
Ao-Als A u2
uio
—N e,
— Do >
ra™ 4 U3
- Hexadecimal value IC U10-4 gets
- of address AO-A15 addressed input from
8000-83FF Ut Ui-4
8400-87FF u2 U2-4
8800-88FF u3 U3-4
Table 1. Multiple node signal sources
Hexadecimal value Example Node signal
of address AO-A15 | stimulus name name
8000-83FF stim_one ul-4
8400-87FF stim_two uz-4
8800-88FF stim_three U3-4

Table 2: One node signal source per stimulus

Figure 5-22: Multiple Signal Sources for One Node

5-57

This programis a sinplified exanple of a G-l stinulus program
The stinmulus programis designed to stinulate a node, while
I the node's response is captured with the probe or /O nodul e.

I This program has two nain parts. First, the response- gat heri ng
I hardware on the testing device is configured with the TL/1 reset,
! sync, threshold, and counter commands. Then the response-

I gathering hardware is activated, and the stinmulus is applied.
I This program shows the TL/1 conmands that are used to configure
I the probe or I/O nodule to collect responses using external sync.

program pod-sync

devlist = gfi device I get the testing device
I from GHl

reset device devlist I reset device to a known
I state

sync device devlist, node “"pod" I sync the device to pod
! ADDR

sync device "/pod", npde "addr"

threshol d device devlist, level »tt1® I specify TTL logic

I levels

counter device devlist. nmode "transition' ! select the counter node

arm device devlist I start the response

' capture
rampdata addr SFOOOO, data 0, nmask S$F I apply the stinulus
rampdata addr SFOOOO, data 0, mask sro
rampdata addr SFOOO0, data 0, mask $Foo
rampdata addr SFOOOO, data 0, mask $F000

readout device devlist I termnate the response
I capture

end pod-sync

Figure 5-23. Stimulus Program (pod-sync)

5-58

4. Conault the TLI1 Reference Manual to convert the

‘~ : } keypad commands into TL/1 datements. Include
. datements to configure the response-gathering
hardware as necessary.

5. Condruct the program from TL/1 statements.

Once you write a dimulus program, you mus verify that it
works as expected. The debugger can help you in this process,
see Section 4 “Debugger” for detalls.

When you write a stimulus program, its responses must be
dored in a simulus program response file usng the same name
as the program: in this case, pod-sync. When the pod-sync
program is executed, GFl measures responses a the node and
compares them to those dored in the response file named
pod-sync.

5-59

Stimulus Program Response Files 5.5.10.

5-60

Figure 524 shows a gimulus program response file named
addr-out, which is a set of responses generated at various nodes
by the simulus program named addr-out. GFl will use the
response file to link stimulus program addr out with the nodes
that the dimulus exercises. A response file should contain
responses measured at nodes on a known-good UUT.

For example, if GFl tests node U27-11, GH would run dal
gimulus programs that exercise U27- 11. Responses generated
a U27-11 by dimulus progran addr-out are compared to the

responses stored in the response file addr-out. GFl uses the
comparison to decide whether U27- 11 is good or bad.

Simulus program addr out, like most others, exercises severd
nodes. Each node is identified by the pin that is that node's
sgnd source. When a stimulus program exercises a node, only
one pin can be specified as a signd source for that node.

I nformation Window on:

. STIMULUS PROGRAM NAME: The name of the

dimulus program response file This fidd cannot be
edited and must match the corresponding stimulus program
name exactly.

. DESCRIPTION: An optiond one-line description.

. DISK FREE, SIZE: The amount of disk space that is 4ill

avalable and the dze of the current stimulus program
response file. These fields cannot be edited.

i STIHILUS PROGRAN NAFE: ADDR_OLT ~ DISK FREE: 8,417,024 BYTES

DESCRIPTION: = SIZE: 204 BYTES
WRITE PROTECT: YES

uf?-11 I/0 MODULE 3C3F 190 19 TRANS 32

ug7-12 1/0 MODULE E73%5 TRRNS

u2?-13 1/0 MODULE @8DpB2 TRANS

uZ7-15 170 MODULE 8CC4 TRRNS

u7-16 170 MODULE 3479 TRRNS

W17 1/0 MODULE 891 TRRNS

uf7-18 1/0 MODULE 2D%E TRANS

uP7-18 1/0 MODULE 12£5 TRANS

Response [ata

Learned fsunc CIk Counter
With SIG LW L Mode Counter Range
10 MODULE 3C3F 1 & 1 & TRANS 32
170 MODULE E738 TRBNS
170 MODULE sDB2 TRANS
/0 MODULE 8CC4 TRANS
1/0 MODULE 3479 TRONS
1/0 MODULE G688t TRANS
1/0 MODULE Z208E TRANS
1/0 MODULE 12t5 TRBNS

i
MORE

THD

/
SELECT DELETE INSLR

T FAULT

information Window Off

Figure 5-24: Stimulus Program Response File (addr_out)

5-62

WRITE PROTECT: The write-protection status of the file.
Use the Field Sdlect key to st this fiedd to YES to specify
write protection for the file. If the file is write protected,
the editor prompts you when the file is saved to ensure that
changes are intentiond. If the file is not write protected,
you will not be prompted. A change in write-protection
datus does not become effective until after you save your
current edits.

Information Window off:

Node Signd Src: Identifies a node by its sgna source
pin. The node is exercised by the stimulus program named
in the information window. It is essentid that while the
dimulus program is run, dgnd activity in the node
originates only from the pin specified in this fied.

* Learned With: Identifies the device (probe or 1/0 module)
that the response data was learned with. This field cannot
be edited and instead is filled in by the 9100A during
LEARN.

. Response Data: Characterizes the node’s response
(described below).

The Response Data fields characterize how nodes on a known-
good UUT responded to the stimulus program named in the
information window. When GFI tests a node, it compares node

responses to the Response Data, which is learned from a
known-good UUT using the LEARN command. If GFl isto
test the node, at least one of these fields must contain data.

¢ SIG: A hex CRC dgnature gathered at the node over the
duration of the stimulus program. The signature may be
modified by one of the following symbols. "*" to show
instability, or "+" or "-" to show that the signature is
margina as explained in the “LEARN Command’ section.

* Async LVL: The asynchronous level history gathered at
the node over the duration of the stimulus program. The
level history can include up to three characters, depending
on the levels detected at the node during the stimulus
program. The history can include a “1” (high), "0" (low),
and "x" or “X”, where either character signifies an invaid
level. An "*" ggnifies unstable levels.

It is also possible to specify one or more don’t care states
in an expected level hist%ré/ by using the "?" character. A
don’t care State is ignored during the comparison of the
expected and measured level histories. This alows you to
specify level histories that require certain states, but don't
care whether other states are present. For example, you

can specify a level history that requires a high and low to

be present, but doesn’t care whether a tristate is present.

5-63

5-64

The "?" character is used to represent a don’t care State.

The meaning of the "?" character is interpreted based on its
position in the field. The Async LVL field is three
columns wide. The columns represent (from left to right)

high, tristate and low. A "?" in the leftmost column means
don’t care on high, in the middle column means don’t
care on tristate, and in the rightmost column means don’t
care on low.

For example, "1?0" means high is required, don’t care on
tristate, and low is required. This pattern would match
every level history that contained a high and low state (10
and 1X0 would both match). As another example, "?20"
means don’t care on high, don’t care on tristate, and low
is required. This pattern would match every level history
that contained a low (0, X0, 10 and 1X0 would match).

You can edit the learned level histories and insert 7"
characters as desired.

Clk LVL: The clocked level history gathered at the node
over the duration of the stimulus program. The level
history can include up to three characters, depending on
the levels detected at the node during the stimulus
program. The history can include a "1" (high), a
"0" (low), and "x" or “X", where either character signifies
an invaid level. An "*" gignifies unstable levels. A "7"
represents a don’t care state.

Counter Mode: A field that specifies whether the Counter
Range is a transition count (TRANS) or a frequency
(FREQ). This field reflects the way the counter was used
by the stimulus program. The counter mode is set in the
pro%(rjam by the counter command. Thisfield cannot be
editeq.

Counter Range: The frequency or the count measured at
the node over the duration of the stimulus program. A
stable count is shown by a single decima number. An
unstable count is shown by a range of observed (lowest
and highest) values. Overflow is indicated by OVFL.

MORE Command

This command displays additiona fidds in the edit window. It
toggles between two screens. The firgt screen contains fields for
the response data and the second screen contains a priority pin
fidd. The node sgnd source field gppears in both screens for
continuity. Fgure 5-25 shows a response file before and after
the MORE command.

Priority Fin: ldentifies the pin that should be checked next

if the response data measured at the current node does not
match the expected data.

This fidd is normaly empty because GFlI autometicaly
sdects the next pin usng rdated input information from
the part description. However, you may know that a
particular node falure is often caused by a bad output
severd components away on the backtracing path.
Considerable time can be saved by jumping directly to this
suspect pin. This cgpability is caled “legpfrogging”, and
the sugpect pin is cdled a “priority pin”.

If abad output has a priority pin, GH will jump to that pin
and test it. If the priority pin is dso bad, backtracing
resumes from there. If the priority pin is good, GFl
retuns to the origind bad Put pin and continues
backtracing from there, just as it there had not been a

priority pin.

DELETE Command

This command deletes the line where the cursor is located.

5-65

Responze Data
fisync Clk Counter
5 LM LWL Hode Counter Range

XIF 1¢ 10 TRANS IR

E735 TRANS
8082 TRANS
8cc4 TRANS
3479 TRANS
5691 TRANS
209K TRANS
125 TRANS

= 18
HORE FRULT

MORE

5-66

Response File After A MORE Command
Figure 5-25: MORE Command Response File

(‘"“\ INSERT Command

This command inserts a new line below the line where the cursor
is located.

LEARN Command

This command, invoked while editing a stimulus program
response file, should be used to gather data from a known-good
UUT. The LEARN command gathers a set of response data for
one node while a stimulus is being executed. Learned responses
are then written to the stimulus program response file, where the
programmer can review and modify selected items before saving
them. The manua alternative to the LEARN command is to type
data known to be correct into the Response Data fields.

LEARN requires that the GFI data base is successfully compiled
for GFl or UFI LEARN, and the stimulus program Is written.
The Info Window fields must be set for the desired LEARN
level, number of repetitions, and coverage.

Toinitiate LEARN, you must be editing a stimulus program
response file. To learn a node response, position the cursor
anywhere on the line for that node. After pressing the LEARN

softkey the following takes place;

1. LEARN will prompt you with USE CURRENT
LEARN OPTIONS. Use the Field Select key to
select Y ES and press the Return key to begin the
learn operation. Select NO if you want to change the
learn options (refer to “Changing LEARN Options’).

2. The GFl database is loaded; LEARN looks here to
determine the testing device to be used.

3. Depending on the results of step 1, you will be
prompted to clip or probe a component, and to then
press the Ready button on the testing device.

4. The stimulus program is executed. If the program
needs the externa control lines on the 1/0 module or

5-67

5-68

clock module, you will be told where the lines are to
be connected.

The stimulus generates responses, which are
collected by LEARN, during the period defined by
the TL/1 arm and readout commands.

If more than one signal source is being learned, or
LEARN requires both measurement devices, steps 2
through 4 may be repeated several times. All pins
measured with the probe are learned first, followed
by dl pins measured by the 1/0 module.

The learned responses can be reviewed and modified
by the programmer.

Select responses to be saved with the SELECT
command. Only data thus selected will be saved
when the response file is saved. LEARN
automatically selects stable CRC signatures.

Changing LEARN Options

The LEARN command can gather data in several different ways.
To change the way that LEARN gathers data, the following
steps should be taken:

1.

In aresponsefile, pressthe LEARN softkey (F3).
The editor will then prompt USE CURRENT
LEARN OPTIONS. Use the Field Select key to
select NO, then press the Return key.

A diadlog window appears with the current LEARN
options. There are three options which can be
changed:

Learn using: Indicates if the next LEARN is for UF
or GFI. A UFI LEARN gathers responses usin
only the measurement device specified for the sign
source pin. A GFI LEARN examines al other pins
on the same node and gathers responses using both
measurement devices if needed. Before executing a

GFI LEARN, a node list must be entered and the
GFI database must be compiled for GFI. Use the
Field Select key to select GFI or UFI.

Learn for: Indicates the number of pins covered by
LEARN. The following are three options that may
be entered using the Field Select key:

. ONE NODE: The line of the Edit Window
containing the cursor is examined. The signa
source pin is learned.

* ONE REF: The line of the Edit Window
containing the cursor is examined. Every line
of the response file whose signal source is on
the same reference designator 1s learned.

* ALL REFS: Every signa source in the
response file is learned.

Repeat stimulus: the LEARN operation is performed
severa times to insure that marginal timing Situaions
are detected. This value controls how many times
the LEARN operation is repeated. Each LEARN
operation runs the stimulus program three times
(refer to “Standard LEARN Cycle Timing”). Enter a
numeric value between 1 and 99.

Use the cursor keys to move between the three
options.

Press the LEARN softkey (F3) to LEARN using the
optionsjust explained. These options remain in
effect until you change them or exit the editor. You
can press the QUIT key to abort the LEARN
command, and return to editing the response file.

5-69

Standard LEARN Cycle Timing

5-70

The LEARN command normaly executes a stimulus program
three times; each time, the clock edge (used to gather data a the
node) is varied dightly. The multiple executions can be used to
tell whether the response is.

° Stable.
. Ungtable.
. Margindly sable.

Before each type of response is displayed, the results of the
three executions are merged into one reading usng methods
described in the next section.

The clock edges of Figures 5-26 and 5-27 can be described as
follows

. Edge B: The synchronized edge, which occurs at the same

ingant as an event specified by the sync command (which
each gimulus should have).

. Edge C. The ddayed edge, which occurs a fixed time
interva after edge B.

* Edge A: The advanced edge, which occurs a fixed time
interval before edge B.

Unstable Response: In Figure 526 Example 1, the
synchronized edge occurs when data changes from high to low
or vice versa. Therefore, the level recorded at the clock edges
A, B, and C will differ; the response is consdered unstable.

Stable Response: In Figure 5-26 Example 2, the
synchronized clock edge occurs when data is aways stable. The
level recorded at the clock edges A, B, and C will not vary
between stimulus program executions and is consdered stable.

@

Data Valid Valid
!
i
1
(A) Advanced Clock Edge Ar i
1
(B) Normal Clock Edge 4

(C) Delayed Clock Edge

R

Example 1: Unstable Response

Data Valid >< Valid

(A) Advanced Clock Edge b

(B) Normal Clock Edge ! ll

© Delayed Clock Edge

Example 2: Stable Response

Figure 5-26: Stable and Unstable Response Timing

5-71

5-72

Marginal Response. Figure 527 illudraes the margind
timing case where data observed a edge B agrees with either
data at edge A or data a edge C. If the data at dl three edges
agrees, the response would be stable and if the data at al three
edges differed, the response would be ungtable. In cases where
two adjacent data points agree, the response is considered
margindly dable If identica responses a A and C are
separated by a different response a B, the response is
consdered unsgtable.

The margind case is important, because the response learned on
a known-good UUT may not be the same as that on an unknown
UUT, if a dightly different cdlock edge is used with the unknown
UUT. This does not mean that the unknown UUT is defective.
On the contrary, if the response from the known-good UUT was
reported to be margina, we may see a different response from
amog every good UUT.

Data Valid Valid

PraTrgmpan EPEY PRESERE T

(A) Advanced Clock Edge I 3

(B) Normal Clock Edge

© Delayed Clock Edge

Marginally Unstable (-) Response

P

Data Valid | Valid
T
|
| 1
i 1
(A) Advanced Clock Edge 3 : i
i .
B) Normal Clock Edge Ar i
]
(C) Delayed Clock Edge ': Jk
]
1

Marginally Unstable (+) Response

Figure 5-27: Marginal Response Timing

5-73

Merging Responses

5-74

The gimulus program is run three times each LEARN cycle with
synchronized, delayed, and advanced clock edges, as described
in the previous section. At each execution, responses are
recorded. LEARN merges each type of data from al executions
into one set according to the following rules

Signature Merging: If the same signature is measured

three times, this Sgnature is recorded unchanged. This is
a gable sgnature.

If only the ddayed and synchronized edge Sgnaures
match, this Sgnature is recorded with a "-" to indicate that
the advan cock dgnaure was different. This is a
margind Sgnature.

If only the advanced-clock and norma-clock signatures
match, this signature is recorded with a "+" to indicate that
the delayed-clock dgnature was different. This is a
margind dgnature.

If different Signatures are recorded each time, an "*" is
displayed to indicate an ungtable sgnature. Figure 5-28
shows examples of how LEARN merges signatures from
three different stimulus program executions.

Asynchronous Level History Merging: If the same

level higory is measured each time LEARN executes the
dimulus, that higtory is recorded; otherwise, the higtory is
reported as unstable (*).

Clock Level History Merging: If the same leve

higoryis measured each time LEARN executes the
dimulus, that history is recorded; otherwise, the higtory is
reported ungtable (*).

Delayed-Clock Normal-Clock Advanced-Clock Recorded

Edge Signature (C) Edge Signature (B) | Edge Signature (A) Signature

14EA 14EA 14EA 14EA

14EA 14EA 225C 14EA-

800F 14EA 14EA 14EA+
14EA 907C 24E0 %*
14EA 907C 14EA *

Figure 5-28: Merging Signatures Example

5-75

. Count or Frequency: If the same count or frequency is
measured each time LEARN executes the stimulus
program, that countor frequencyis recorded; otherwise, a

range (highest and lowest vaues) is recorded. In case of
an overflow, an "OVFL" message is displayed.

SELECT Command

Once the data has been recorded in the Response Data fields,
you can select the data you want to save by moving the cursor to
the appropriate field and pressing the SELECT softkey.
Sdected data vaues ae displayed highlighted. A dable
sgnature (one with no + or -) is automaticaly sdlected, but you
can de-sdect it usng the SELECT softkey. Unstable data
cannot be sdected. When you quit the editor, the response file
is saved containing only the sdected data.

Pressng Shift and SELECT smultaneoudy selects or de-sdects
an entire column of response data.

Editing a Stimulus Program Response File 5.5.11.

Response files contain data characterizing how nodes on a
known-good UUT responded to a stimulus program. To edit the
response file pod-sync, in the UUT directory abc:

1. Pressthe Edit key and type:
/hdr/abc/pod_sync

(pod-sync is dso the name of an exiging simulus
program.)

2. Press the Return key, specify the TYPE fidd as
RESPONSE, and press Return again.

3. Move the cursor to the bottom line and pogtion it in
the Node Sgnd Src fidd. This fidd is used to
identify the node exercised by the prog?]ream. The node
is identified by typing the name of the pin (on that

5-76

(> node) that acts as the node sgnad source during the
. simulus program.

4. To use GFI's optiond legpfrogging capebility, press
the MORE softkey, move the cursor to the Priority
Fin field, and enter the name of a pin. This fidd can
be blank.

5. Repeat geps 3 and 4 until one line has been entered
for each node tha is exercised by the simulus

program.

6. Press Quit, and use Fidd Sdect to specify whether
or not to save your edits. The LEARN command can
be used later to fill in the Response Data fidds.

Example LEARN Session 5.5.12.

Simulus program response files ae pared with gimulus
programs. Response files contan the response data that
characterizes how nodes on a known-good UUT responded to
the simulus program.

Figures 5-29 through 5-31 show example screens (1 - 5) that ‘
you would see when following this example. The steps are: ¢

1. Pressthe Edit key and type: i
/hdr/abc/addr_out

2. Press Return, select RESPONSE as the TYPE fidld,
and press the Return key again. Screen 1 shows the

response file named addr_out. i

3. Move the cursor down to a node signd source for ‘
which responses are to be learned (in this example it I
will be U27-16).

4. Press the LEARN softkey. You will be prompted
USE CURRENT LEARN OPTIONS. Use the Fidd
Sdect key to select NO and then press the Return i

5-77

5-78

The didog window for the learn options will gppear.

Change the stings to the following:
Lean Usng: GFl
Learn for: ONE NODE

Repeat Stimulus 1 time(s)

Use the cursor keys to move between the options.
Use the Fidd Sdect key for the “Learn Usng:” and
“Learn for” fidds Use the numeric keys for the
“Repeat Stimulus’ fidd. Refer to screen 2 to see
how the LEARN options should be st up.

Press the LEARN softkey; the GFl database is
loaded, and a GFl LEARN of the node stimulated by
U27- 16 begins. If many pins are to be learned,
measurements are made first with the probe,
followed by measurements made with 1/0 module
cips.

You are now prompted to probe U3-15. U27-16 is
on the same circuit node as U3-15. Refer to screen 3

in FHgure 5-30 for the message prompting you to
probe U3-15.

- Respense Data -

Learned fieync Lik
With SIG b
I/DMODULE 3C3F 1@ 14
170 HODULE E735
I/0 MODULE 8DB2
1/0 MODULE BCC4
170 MODULE
170 MODULE
170 HODULE
1/0 MODULE

Counter

Mode Counter Range

TRANS 32
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Screen 1

Figure 5-29: Example LEARN Session (Screen 1)

5-79

Screen 2

Losding GFT Database | ..

Fress button on PROBE when RERDY

5-80

Screen 3

Figure 5-30: Example LEARN Session (Screens 2 and 3)

10.

11.

Connect the probe common clip to common, probe
U3-15, and press the Ready button. You snould
hear a beep indicating that the LEARN operation is
beginning. Do not move the probe until you hear a
second beep indicating the end of the LEARN
operation.

You are now asked to clip U27, refer to screen 4 of
Figure S-31. Using the correct 1/0 module adaptor
clip, clip onto U27 and press the 1/0O module Ready

button. You should hear a beep as LEARN executes
the simulus program.

Screen 5 shows the learned responses. There are
two sets for U27-16: one each from steps 5 and 7.
Stable sgnatures are highlighted (selected).

To sdect or de-sdect a fidd, move the cursor to the
field and press the SELECT softkey.

Quit, saving changes if necessary. Only data
sdected using SELECT will be saved.

5-81

- g
s

button on L0 MODULE when REERDY

Screen 4

Hesponse Data

Hode Learned ﬂs?nc Lk Counter
Sigral 5o With 516 L. LU Mode Counter Range
10 MODULE 3CF 1 @ 1 @ TraNs 32
1/0 MODULE E738 TRANS
1/D MODULE 8082 TRENS
1/D MODULE 8CC4 TRANS
FROBE 3479 10 14 TRANS 32
1/0 MDDULE 3479 1¢ 1¢ TRANS 32
1/ MODULE TRANS
u?7-18 1/0 MODULE TRANS
uz7-149 1/D MODULE TRANS

TE INSERT MORE

5-82

Screen 5

Figure 5-31: Example LEARN Session (Screens 4 and 5)

OFFSET Command

The probe and 1/0 module have hardware delay lines that adjust
the relaive timing between clock and data sgnas. During probe
and 1/0 module cdlibration, these delay lines are adjusted and a
cdibrated offset delay vaue is stored for each sync mode. The
offset value controls when the probe and I/O module latch data.

When the cdibrated offset delay is not agppropriate for a

measurement, the TL/1 setoffset command is used insde a TL/1
program to change the delay.

Offsets may need to be used when tesing UUTs with dight
timing variations on one board, or if there are board-to-board
timing vaidions

For example, assume that a properly-functioning board has a
dight timing variation from board-to-board and dso that the
timing of the sgnd of interest can vary by severa nanoseconds
as shown in Figure 5-32.

Note the variaion in the signal state during time periods T3, T4,
TS, T9 and T10. If this sgnd was beng cdocked by CRC
sgnatures and the signd state was latched a these time periods,
different CRC Sgnatures could result. Even though a board is
functioning properly, it will occesondly fal during functiona
test because the measured CRC does not match the expected
CRC.

The solution is to control the time a which the dgnd date is
latched for a CRC sgnature. In the previous example, the signd
should not be latched at time periods T3, T4, TS5, T9, or T10
because the sgnd date can vary a these times. Ingteed, the
sgna should be latched at time periods T6, T7, or T8 when the
sgna is known to be a a consgtent state. The TL/1 setoffset
command is used to control when the probe and I/O module
latch data.

5-83

EARLIEST RISING EDGE

LATEST RISING EDGE EARLIEST
FALLING
EDGE
VALID DATA
BOARD #{ LATEST
FALLING
VALID DATA EDGE
BOARD #2

T T2 T3 T4 T5 9 Ti0 T11

\ /

VALID DATA FOR
CONSISTENT CRC MEASUREMENT

Figure 5-32: A Signal with Timing Variation

5-84

approprigte offset dday for a measurement. Once the
gppropriate offset delay is determined, the TL/1 program that
aoplies the measurement stimulus can be modified to st the
offsat.

:\‘ The GFI Offset procedure permits you to easly determine the

The Offsst Window EXEC softkey executes a TL/1 program
over a range of offsets. Samples are taken a various offsets
within the range and the response data gathered during each
sample is displayed.

To teke a sample, the offsat vaue is s, the TL/1 simulus
program is executed, and the response data gathered during that
program’s arm. ..readout block is displayed. Graphica
waveforms show the clocked level and CRC signature
throughout the offset range.

In addition, the LOOP softkey repestedly loops through the
offset range, executing the TL/1 stimulus program until the loop
Is terminated. Each iteration through the offset range is cdled a
sweep. Looping dlows multiple samples to be taken a each
offset vdue. This dlows the response dtability a each offset
value to be checked.

Briefly, to use offsats with GFl, follow these steps.
1. Cdlibrate the probe or 1/0 module, or restore caldata
settings. This establishes the calibrated offset delay
to which additiona offsets are added.

2. If the desired offset is known, go to step 7.

5-85

3. Compile the UUT database. The database is required
by the offset procedure.

4. Begin editing a response file. Pogtion the cursor on
the line in which the offsets are to be checked.

5. Pressthe OFFSET softkey.

6. Press the EXEC or LOOP softkey to determine the
best offset.

7. Edit the TL/1 dimulus program and add a setoffset
command to set the offsat to the desred vaue.
“Sdting the Offsat in a Simulus Program” explains
how to set the offsat.

The Offset procedure is designed to be used with GFl gimulus
programs and requires that a compiled UUT database exids.
Refer to “Compiling the GFlI Daabase for a UUT” in this
section.

Probe and 1/0O module cdibration are described in the Automated
Operations Manual, Technical User’s Manual, and the TL/]
Reference Manual. The setoffset and getoffset commands are
described in the TL/1 Reference Manual. The Offset procedure
is described in the following paragraphs.

Description of the GFI Offset Window

5-86

The GFI Offset Window (shown in Figure 5-33) overlays the
exiging editor screen. It has top and bottom satus lines, tables
on the top left and right, waveforms for both clocked leve and
CRC dgnature, a legend that describes symbols used on the
waveforms, and softkey labds.

Press the OFFSET softkey to toggle the GFl Offset Window on
and off. When sdected, the GH Offset Window overlays the
existing screen. Information displayed on this window
disappears when it is toggled off. The GF Offset Window
(Figure 5-33) is described in the following paragraphs.

O

w—= UPPER LEFT TABLE

UPPER RIGHT TABLE ==

STATUS LINE
--------------------- Response Data ===~=e=-cemcccccacne-
Node Learned Rsanc Clk counter
Signal 3re With 516 LWL L¥L Hode Counter Range
ui-1
2-2

Offset Range:
Sample Resolution:

Offset:
SIG:

Async LVL:
Clk L¥L:
count:

Number of Loops Thmugh Range::
Node Signal src: -I

Clk L¥L

SIG

LEGEND: B means the Clk LYL was iX, X8 or 1%@

*

mzans the SIGgr Cl§ L¥L for one offset changed while looping

> = Fe = F7
[OFFSET EXEC LOOP FALLT
LEGE:\E SOFTKEY NUMBER | soFTkEY LABEL LINE

= \WAVEFORMS

The Offset Window Before Execution (EXEC or LOOP)

The Offset Window During Execution (EXEC)

Figure 5-33; The GFI Offset Window

5-87

5-88

Upper Left Table:

The table at the top left of the window displays response data
gathered in the current sample. This table is updated
continuoudy as samples are taken at various offsets in the offsat
range. Data in the table corresponds to the place in the
waveform to which the arrow points.

The upper left table contains the following fidds:

Offst: The offset for the current sample.

SIG: The CRC sgnature for the current sample.

Async LVL: The asynchronous leve for the current sample.

CLK LVL: The clocked levd for the current sample.

Count: The count for the current sample. The range of
counts seen in dl samples is dso displayed.

Upper Right Table:

The table a the top right of the window displays information
about the execution. It contains responses to the EXEC and
LOOP softkey prompts. This table has the following fidds:

Offsst Range:

Sample Resolution:

Number of Loops through Range:

Node Signa Src:

The range of offsets that are
being sampled.

The resolution between
samples in the offset range
(I=most resolution, 9 =
leest resolution).

The number of times the
offset range has been
swept. This is used when
the LOORP softkey is
active.

The pin being sampled.

O

Waveforms

Waveforms for the clocked levedl and CRC sdignature are
displayed. Each character of the waveform represents the
repponse data gathered a a dngle offset. The characters
combine to form a waveform that graphicdly represents the
regponse data for the entire offset range. The waveform is
updated or extended to the right as each sample is taken.

Clk LVL:

SIG:

The clocked level waveform is drawn to display
the three states: high, low, tri-state and
combinations of these dtates. See the description

of “legend” in “The Bottom of the GH Offset
Window” for more information.

The CRC dgnature waveform uses two symbols:
Parallel Lines

[Left Bracket

The pardld lines indicate that the CRC sgnature
a asample is the same as the previous sample.

The left bracket indicates that the CRC signature at
a sample is different than the CRC signature a the
previous sample. This indicates that the sample
was taken near a Sgnd edge.

The diamond shows the origind offsat before any
samples are taken.

The arrow points at the current sample in the SIG
waveform. The arow pogtion is automaticaly
updated during EXEC or LOOP. After the EXEC
or LOOP operation, use the left-arrow and right-
arrow keys to move the arrow dong the waveform.
As the arrow is moved, the upper table is updated
to display the response data for the sample to
which the arow points. This dlows you to
examine the response data for dl samples in the
offset range.

5-89

5-90

The Bottom of the GFI Offset Window:

The bottom of the GFI Offsst Window contains a legend to
explain the waveform symbols and the softkey labels.

The graphic character set on the 9100A does not contain
symbols that draw the following combined dtates:

* Tri-date and high levd.

® Tri-gtate and low leve.

. Tri-gate and high and low leve.

The block symboal (a) represents these three states. The upper
left table identifies which of these three states actually occurred.

The adterisk (*) appears in a waveform during looping and
indicates an unstable CRC ggnature or an unstable clocked
level. Looping dlows multiple samples to be teken a an offsat
vaue (once each time the range is swept).

The asterisk gppears in the Clk LVL waveform when the clocked
level for one offset value changes between sweeps. The asterisk

aopears in the SG waveform when the CRC sgnature for one
offset value changes between sweeps.

Status Line

The datus line displays the execution datus EXECUTING,
LOOPING, OR COMPLETE.

Softkeys on the GFI Offset Window:

Softkey numbers and ther labels gppear a the bottom of the
window. Error messages and prompts also appear on this line,

Sofkeys used with the GFl Offset Window are:
OFFSET: Toggles the Offsst Window on and off. Information

displayed in the Offsat Window disgppears when it is
toggled off.

EXEC: Sats one sweep of the offset range. The TL/1

program will be executed a& various offsats within
the range.

LOOP: Starts sweeping through the offset range. The TL/1
program is executed a various offssts within the
range. The range is swept repestedly, resulting in
multiple samples a each offsst vdue Press the
QUIT key to terminate the looping.

FAULT: Toggles the Fault Window on and off. The Fault

Window displays fault messages which are raised by
the TL/1 program.

The EXEC Softkey

The Offsst Window EXEC softkey is used to execute a TL/1
program over a range of offsets. ples are taken at various

offsets within the range and the response data gathered during
each sample is displayed.

To teke a sample, the offset value is s, the TL/1 dimulus
program is executed, and the response data gathered during that
progran’'s arm...readout block is displayed. One graphica
waveform shows the clocked level throughout the offset range.
Ancther waveform shows changes in the CRC dgnatures
throughout the offset range.

To begin execution, use the following procedure:
1. The Offset procedure requires that a compiled UUT
database exist. Refer to “Compiling the GFI
Database for a UUT” for ingructions on compiling a
database.

2. Edit the response file in which you want to check the
offsats.

5-91

5-92

Determine which node to check for offses. If the
response file dready contains a line for that node,
pogtion the cursor on that line If the response file
does not contain a line for the node, add it. Leave
the cursor on the line for the desired node.

Press the OFFSET softkey. The UUT database is
loaded and the Offset Window appears.

Press the EXEC softkey. The following prompt
appears:

EXECUTE PROGRAM

Enter the name of the TL/1 program to be executed
throughout the offsst range. Typicdly, you will
execute the gimulus program that is pared with this
response file (this name agppears as the default).
However, you may pecify any program in the
UUT. Press RETURN. See Figure 3-27 and 5-34
in this manud for simulus program guidelines

NOTE

The stimulus program cannot contain a
setoffset command when it is executedfrom the
Offset Window.

The following prompt appears.

OFFSET RANGE (ns) FROM

Enter the offset to be used as the beginning of the
offset range. The value entered represents
nanoseconds and is biased by a value of 1000000
(decimd). For example, if the fird sample is to be
taken 100 nanoseconds before the caibration point,
enter 999900 (1000000-100). If the first sample is
to be taken 25 nanoseconds before the calibration
point, enter 999975 (1000000-25).

Enter the vaue 999000 (this gppears as the initia
default) to ensure that the entire offsst range is
sampled. Press RETURN.

The following prompt appears.
TO

Enter the offset to be used as the end of the offset
range. The vaue entered represents nanoseconds
and is biased by a vaue of 1000000 (decimal). For
example, if the last sample is to be taken 50
nanoseconds after the calibration point, enter
1000050 (1000000 + 50).

Enter the vadue 1001000 (this appears as the initid
default) to make sure that the entire offset range is
sampled. Press the RETURN key.

The following prompt appears.
SAVPLE RESOLUTION (I -9)

Enter a number representing how often samples
should be taken in the offset range. Enter 1 for the
most resolution and 9 for the least resolution. For
example, enter 1 to take a sample a every offset
vaue in the offset range. Enter 2 to teke a sample at
every other offsst vaue in the offsst range. Enter 3
to teke a sample a every third offsat vaue in the
offset range.

Enter the vaue 1 (this gppears as the initid default) to
make sure that sargpl&s are taken at every possible
offsst vaue in the offsat range.

A prompt to probe a pin or clip a component appears.
An example is

Probe U3-14 and press button on PRCBE
when READY

5-93

Follow the indructions in the message. When the
button is pressed, the message “EXECUTING..”
appears at the bottom of the screen and executions of
the TL/1 program begin. Do not move the probe or
I/O module until this message disgppears and the
softkey labels reappear.

As each sample in the offset range is taken, the upper
left table and the waveforms are updated to display
the response data for that sample.

10. When the execution is complete, press the left-arrow
and right-arrow keys to move through the
waveforms and examine the response data a a
particular offset.

11. Pogtion the waveform arow a the point with the
desred offset. The actud offset a that point is listed
in the upper left table. Make a note of the offset
vadue. Modify the TL/1 dimulus program to st the
offst to that vaue. Refer to “Setting the Offset in a
Stimulus Program” for ingructions.

Press the QUIT key to abort from the prompts or to stop
execution of the TL/1 program.

An Example of Selecting the Desired Offset

Figure 5-34 shows when address and data are vadid for a smple
microprocessor write cycle. Assume that a data line is tested by
using the probe to gather a CRC sgnature while a series of UUT
writes is performed. The sgnad dae should be latched during
the data valid period. At other times, the signd on the data line
changes, reaulting in changing CRC's, The SIG waveform
indicates that the CRC is changing during the data invdid
period.

In Figure 5-34, the Sgna dae should be latched in the middle
of the data valid period.

5-94

O

AO-A15 } ADDRESS VALID
DO-D7 | X DATA VALID

.
; DATA SIG

WAVEFORM

Figure 5-34: Selecting'an Offset

5-95

The LOOP Softkey

Use the LOOP softkey to repeatedly loop through the offset
range, executing the TL/1 gimulus program until the loop is
terminated. Each iteration through the offset range is cdled a
“sweep”. Looping dlows multiple samples to be taken a each
offset vaue. This dlows the response dability a each offsat
value to be checked.

To begin looping, use the following procedure:

1. Press the LOOP softkey. The following prompt
appears:

LOOP and EXECUTE PROGRAM

2. You are prompted for the program name, offset range,
and sample resolution and ingtructed to probe or clip a
component. These steps are described in “The EXEC
Softkey" in this section.

The waveform drawn on the screen is the same as if you had
pressed the EXEC key. Looping continues until you press the
QUIT key.

NOTE

Unstable CRC signatures and unstable clocked levels
appear as asterisks. Looping allows multiple samples
to be taken at an offset value (once each time the range
IS swept).

The fidd entitted “Number of Loops Through Range’ in the
upper right table tells you how many loops are completed.

The FAULT Softkey

5-96

When both the EXEC and the LOOP functions are executing a
TL/1 program, faults can occur in the program. When a fault is
rased in a TL/1 program, it is reported to the user. The program

stops and the Fault Window pops up. When the Fault Window

is displayed, press the FAULT softkey to remove it.

("”\; Setting the Offset in a Stimulus Program

Once the desred offset vadue is determined, the TL/1 simulus
program must be modified to set the offsat to that vadue The
program should aso restore the origind offset vaue when it
terminates.

A program containing an offsat cannot be used for EXEC and
LOOP. The offset in the program overrides any offsets entered
in the EXEC and LOOP procedures and an error message
appears.

To =t the offset in a TL/1 program, the program should do the
fallowing:

e Initidize the UUT as required for the simulus to be
applied.
. Configure the response-gathering hardware on the probe

or 1/O module. This includes seting the sync mode,
threshold, counter mode, etc.

‘) ¢ Get the origind offset vaue usng getoffset and save it.
. Set the offset to the desred vaue using setoffset.
. Apply the simulus within an arm...readout block. Read
the results of the dimulus by usng the readout
command.

. Regtore the origind offset value usng setoffset.

The TL/1 setoffset and getoffset commands apBg/ to the current
sync mode. Therefore, the sync mode must st (with the
TL/1 sync command) before these commands are used. If a
fault occurs during execution of the program, the origind offset
must be restored. The program example includes a universa
fault handler which restores the offset and reraises the origind
fault.

Figure 5-35 is a program example that shows a GFl gimulus
program that sets an offset.

5-97

5-98

program pod- sync

declare
I global variables shared with fault handler
global nuneric orig-offset
gl obal string dev

end declare

I This fault handler ensures that the original offset gets restored
I if the program exits because a fault is raised. It restores the

I offset and then reraises the original fault.
handl e
declare
I global variables shared with main program
global numeric orig-offset
global string dev
end declare

setoffset device dev, offset orig-offset
refaul t
end handle

e main program starts here —-——--e———————cmmmm———

I get the neasurement device name from GFI
dev = g¢fi device

I configure the neasurement hardware on the probe [/) nodule

reset device dev I reset device to a known state
threshol d device dev, level »tt1™ I set threshold levels
counter device dev, mpde “"transition" ! set counter node

sync device dev, node "pod" ! sync device to pod
sync device "/pod", node "addr" I sync pod to address

| save the original offset (nust be done after the sync node is set)

orig-offset = getoffset device dev

| set the offset to 10 nanoseconds before the calibrated offset
setof fset device dev, offset 999990

(continued on the next page)

Figure 5-35: GFI Stimulus Program that Sets an Offset

del ay

TN I apply the stimulus
‘) arm device dev I start the response capture
rampdata addr SFOOOO, data mask sF

rampdata addr SFOOOO, data msk $Fo
ranpdata addr SFOOOO, data msk $F00
rampdata addr SFOOOO, data mask SF000
readout device dev | terminate response capture

ococoo

I restore the offset to the original value
setof fset device dev, offset orig_uoffset

end program

Figure 5-35: GFI Stimulus Program that Sets an Offset (cont)

Compiling the GFl Database for a UUT 5.5.13.

To learn responses use the Response Offset Window, or
perform GFl or UFI, information from the UUT (REFLIST,

parts, NODELIST, and responses) must be compiled into a
binary form (the database). GFI, UFI, response LEARN, and
]E_k;e Offset Window use the database rather than the individual

iles.

Compilation is typically an iterative process with at least two
cchIes. After the UUT topolo%y information is entered
(NODELIST, RELIST, and parts), the UUT is compiled so that
responses are learned; then the UUT is compiled again so that
GFl or UFI can be performed.

Depending on the intended use of the compiled database,
different UUT files are compiled as shown in Figure 5-36.

Only one data base can be compiled for each UUT. Each time
you compile the UUT, the new database writes over the old one.
A database can be copied or removed using the COPY or
REMOVE softkey respectively.

When the UUT is compiled, the REFLIST, parts, NODELIST,
and responses are compiled into a binary database. GFI, UF,
and LEARN use the database rather than the individua files. If
you change any of the UUT files (REFLIST, parts,
NODELIST, or responses), the UUT must be recompiled so that
the database includes the UUT file changes.

5-99

UUT FILES COMPILED

DATABASE USE REFLIST | PARTS | NODE LIST | RESPONSES | PROGRAMS
TROUBLESHOOT UUT for GFI | YES | YES | YES YES NO
TROUBLESHOOT UUT for UFl | YES | YES | MO YES NO
LEARN RESPONSES for GF| ves | ves | YEs NO NO
LEARN RESPONSES for UF! ves | ves | No NO NO

5-100

Figure 5-36: Compiled UUT Files

Compilation is a two pass process using the following seven
Q steps. The first pass alows the response to be learned. In step 4,
select LEARN RESPONSES.

Repeat steps 1 through 7 for the second

(after learn). The

ass
second pass readies the system for troubPeshooting. In step 4,
select TROUBLESHOOTING UUT.

To compile a UUT caled abc, refer to the following steps:

1

Enter the UUT directory by pressing the EDIT key
and typing:

/hdr/abc

Press the Return key, select UUT as the TYPE field,
and press the Return key again.

Press the COMPILE softkey (F3), and the 9100A
issues the the following prompt:

COWPI LE database to TROUBLESHOOT UUT
LEARN RESPONSES

Press the Field Select key to select
TROUBLESHOOT UUT or LEARN RESPONSES.

5-101

5-102

5. Press the Return key; an additional prompt is
appended to the original prompt shown below:

COWI LE database to TROUBLESHOOT UUT for GFI
UFI
or

COWPI LE dat abase to LEARN RESPONSES for GFl
UFI

6. Pressthe FIELD SELECT key to select GFI or UFI.

If the database will be used to perform GFI, select
GFl. Make this selection even if you are only
learning responses at this time. If the database will
be used to perform UFI, select UFI.

7. Press the Return key to compile the database.

If the UUT is successfully compiled with O errors,
the resulting compiled database is written to the disk.

If the compiler detects a problem, the M es
Window displays an error message. Correct the

error and repeat steps 1 through 7.

Status messages, error messages, and warnings are displayed by
the UUT compiler on the Messages Window shown in Figure 5-
37. Screen 1 shows the information after a successful compile.

Screen 2 shows the information after a compile containing
errors.

e

HUT o

Screen 1

osrrors

UIT Compilier (GFI1:

HHT ref t izt and parts

: undet ined part '_'4 44
: duplicate ref TULE

more than ons ;—.U’l iz named ‘al2
T noded L

i

e data op fime
e FHEE FEEFI!I‘IEEE o UIZF 0

m i

to oont bne

Figure 5-37:

Screen 2

Information Displayed After a Successful and Unsuccessful
Compile

5-103

Error

5-104

Error messages are displayed in the following format:

File Nanme (Line Number): Error Message

A databaseis not created by the compiler until all errorsare
corrected.

Warnings are displayed in a similar format with one exception;
the message is preceded by the word “warning” as shown In the
following format:

File Nane (Line Number): warning: \Warning Message
Warnings do not stop the compiler from creating a database.

You should investigate the warning; it may indicate thet there is a
mistake in the named file.

Messages

The following are possible error messages issued by the
compiler. An explanation of each message is provided with
instructions to remove the error.

‘ref-pin’ appears in nultiple nodes

The named pin islisted in the NODELIST more than
once. Remove all extra references to the pin from the
NODELIST.

‘ref-pin’ has already appeared as a signal source
for this node

According to the NODELIST, the named pin and the pin
listed in the response file are on the same node. GFI
requires that only one pin drive the node during a
stimulus Fgz)rogram. This pin should be listed as the signal
source. Remove al references to the pin that is not the
driver from the response file.

duplicate ref ‘ref’

The named reference designator has already appeared in
the REFLIST. Remove the duplicate entry from the
REFLIST.

inconplete list of pin nanes beside IC picture

Some of the pins on the named part have been given pin
names, but other pins do not have names. Add pin
names to the part for every pin on the IC.

mssing |/ O MODULE responses for' ‘ref-pin’
The node requires responses learned with the 1/0

Module. Use the response LEARN command to
characterize the node again.

m ssi ng PROBE responses for ‘ref-pin’

The node requires responses learned with the Probe.
Use the response LEARN command to characterize the
node again.

nore than one pin is naned ‘pin’

The named pat description has multiple pins with the
same name. Rename one of the pins.

no part listed for ref ‘ref’
The RELIST contains the named reference designator,

but the pat fidd is blank. Fll in the pat name in the
RELIST.

5-105

5-106

pin 'pin" has more than 255 related input pins

Too many reaed input pins have been liged for the
named pin. Look for duplicate entries in the lines below
the IC in the part description.

signal source 'ref-pin" is an input pin

The response file specifies that the named pin is driving
the node, but the part description identifies the pin as an
input pin. The error could be in any of three files. In the
response file, the wrong pin on the node has been named
as the sgnd source. In the REFLIST file, the wrong
part has been liged. In the part description file, the pin-

type is wrong.

too many name strings in UUT (max 65,534 characters)

The name table has overflowed. This table contans
reference dedgnator names, pin names, and dimulus
program names. Shorten the names.

undefined part 'part’

The named pat is liged in the REFLIST, but does not
exig in the part library, Create the part in the part library.

undefined pin ‘'ref-pin

This message has multiple meanings, depending on what
file is being compiled when it is issued.

If the RELIST or part descriptions are being compiled,
the error message indicates the part description does not
have a matching pin name. Add the pin name to the part
description.

_

If the responses or NODELIST are being compiled,
gther the reference dedgnator did not appear in the
REFLIST, or there is no matching pin name in the part
description. Add the reference desgnator to the
REFLIST or add the pin name to the part description.
This message is ds0 issued if the named pin gopears in
the “*MASTERS’ section of the NODELIST, but did
not appear previoudy in the NODELIST. Add the pin to
the NODELIST.

unknown nunber of pins

A pat is referenced, but the library description of
that part is incomplete. Enter the number of pins in the
part description.

Warning Messages

Warnings indicate a possble error that the compiler is ignoring.
These messages should be investigated to make sure that nothing
is wrong on the indicated line. The following ae possble
warning messages issued by the compiler. Included with the
message is an explanation of the message and ingructions on
how to avoid future smilar warnings.

warning. no response data on line
A dgna source pin is listed, but the response data was

not learned. Use the response LEARN command to
characterize the node.

warning: non-enpty line ignored (I/O MODULE
responses not required)

The node does not require responses learned with the 1/0
module. Delete the line from the response file.

5-107

warning: non-enpty line ignored (PROBE responses
not required)

The node does not require responses learned with the
Probe, Delete the line from the response file,

warning: non-enmpty line ignored (no pin nunber
l'isted)

The output pin has not been entered in front of the list of
related input pins gppearing below the IC. Enter the
output pin in the ‘pin’ fied.

warning: non-enpty line ignored (no ref |isted)
A pat is liged on this ling, but the ‘ref’ fidd is empty.
Enter the name of the reference designator.

warning: non-empty line ignored (no signal source
|isted)

This line contains learned response data or a priority pin,
but the sgnd source fidd is empty. Enter the name of
the sgnd source pin.

warning: signal source ‘ref-pin’ is an input pin

The response file specifies that the named pin is driving
the node, but the part description identifies the pin as an
input pin. Ignore this message for UF. b

5-108

Generating a Summary of the GFI Database 5.5.14.

The 9100A provides a convenient means to check the
completeness of the information you have compiled into the GH
database. When viewing the UUT directory display, you can
press the SUMMARY softkey to request generation of a
summary of GH coverage for that paticular UUT. The
compiled database (GFIDATA or UFIDATA) will be examined
and a summary will be generated, displayed on the monitor, and
dored in a UUT text file that you specify. If you press the Shift
key on the programmer’s keyboard and the SUMMARY
softkey, the summary will appear on the monitor without
sending a copy to atext file.

The summary can only be generated for databases that are
compiled to TROUBLESHOOT UUT. If the database was
compiled to LEARN RESPONSES, an eror message is
displayed when an attempt is made to generate the summary.

Creating a Summary of GFI Coverage

(\ The following procedure is used to generate a Summary of GFI
Coverage for a UUT:

1. Pressthe EDIT key on the operator’s keypad to enter
the Editor (unless you are dready in the Editor).

2. Use the Edit key on the Programmer’s Keyboard to
enter the name of the UUT so that the UUT directory
for this UUT is digdlayed on the monitor. The UUT
directory you have sdected must contain a compiled
database (either GFIDATA or UFIDATA).

3. Pressthe SUMMARY Softkey (F8) and the 9100A
will issue the prompt shown below to ask for a text
file name

Cenerate GFlI Summary to TEXT file

The Summary of GH Coverage to be generated will
be stored in this text file.

5-109

4. Type in the text file name you wish and press the
Return key. The 9100A will then begin generaing
the Summary of GFl Coverage for the UUT and will
display the results on the monitor.

When the generation is complete, the following message will
gppear on the monitor:

Press Msgs key to continue

When you press the Msgs key on the programmer’s keyboard,
the UUT directory display will regppear on the monitor. You
can use the Edit key on the programmer’s keyboard to access the
text file you generated.

Statistical Summary

5-110

The firg pat of the Summary of GF Coverage is a datidticd
summary of the UUT, based on the GFl database you have
provided. Figure 5-38 shows a typicd example of such a
summary. Each entry in the summary is described below:

¢ Summary for /<disk drive>/<UUT>: In Figure
5-3 1, HDR is the disk drive and the UUT directory name
is EXAMPLE.

o Parts. The number of unique pat types in the UUT,
based on the reference designator list.

¢ ReferenceDesignators. The number of reference
designators in the UUT, based on the node ligt.

. Connected Pins: The number of UUT pins that are
(I:_onnected to other pins on the UUT, based on the node
<.

° Unconnected Pins. The number of UUT pins that are
Ir_1ot connected to any other UUT pins, based on the node
1.

* Total Pins: The totd number of pins on the UUT.

Summary for /HDR/EXAMPLE:

53
167
1694
225
1919
42

1688
16
1704

6

. 209
‘) 215

99% Test
88% Test

Parts

Reference Designators
Connected Pins

Unconnected Pins

Total Pins

Prograns

Testabl e Connected Pins
Testabl e Unconnected Pins
Total Testable Pins
Untestable Connected Pins

Untestabl e Unconnected Pins
Total Untestable Pins

Coverage of Connected Pins
Coverage of Total Pins

Figure 5-38: Statistical Summary Display for a UUT

5-111

5-112

Programs. The number of TL/1 programs that can be

used by GFl as simulus programs. This number is equd
to the number of response files.

Testable Connected Pins. The number of connected
pins that can be tested by GFI. Testable pins have ether
been characterized with LEARN, or are a member of a
node that has been characterized with LEARN.

Testable Unconnected Pins. The number of
unconnected pins that can be tested by GFI. Tedtable
unconnected pins have been characterized by LEARN and
appear in a response file.

Total Testable Pins: The totd number of UUT pins
that can be tested with GFI, given the database you have
entered.

Untestable Connected Pins. The number of

connected pins that cannot be tested with GFI, due to an
incomplete database.

Untestable Unconnected Pins: The number of

unconnected pins that cannot be tested with GHI, due to an
incomplete database.

Total Untestable Pins. The totd number of UUT pins
that cannot be tested with GF, given the database you
have entered.

Test Coverage of Connected Pins. The percentage

of connected pins on the UUT that can be tested with G,
given the database you have entered. A figure of less than
100% indicates an incomplete database.

Test Coverage of Total Pins. The percentage of

UUT pins that can be tested with GFI, given the database
you have entered. This figure is typicdly less than 100%
because a UUT often has unused pins.

e

Pin Coverage Matrix

The second part of the GFI Summary of Coverage display is a
matrix showing how component pins ae teded with the
database you have provided. Figure 534 shows a partid
example of a pin coverage matrix. The matrix is organized with
the reference desgnators liged verticdly (in the left-most
column) and with component pin numbers liged horizontaly.
The number of pins per line will be the number required by the
largest component in the list. If more than 35 pins are required,
the display will produce a second ligt of reference designators
falowing the firg lig and this second set will have pin numbers
garting with 36 and continuing up from there.

Each component pin has a one-character symbol that shows
what how GFl looks at the pin, given the database you have
provided. The table at the bottom of Figure 5-39 shows the
meaning of each symboal that is possible

UNGUIDED FAULT ISOLATION (UFI) 5.6.

UFl is dedgned for a dtuation where the user wishes to use

GFI's pin-testing capability but does not need probing

suggestions. A UFI operator may, for example, use a
combination of functiona test programs, keypad commands,
and UF to troubleshoot a UUT. The UFI operator is normdly

someone who is familiar with the UUT, who has a good idea
why it faled, and who can save time accordingly.

5-113

Differences between UFI and GFlI 5.6.1.

GFl tests a pin and determines whether or not it is good. GFl
then evduates the status (good or bad) of al other UUT pins,
and accordi ngle/ makes a probing recommendation. The process
IS repeated until GFIcan accuse a faulty component.

UHF only tests output pins; it will not make recommendations on
where to probe next. UH is usad to verify whether a pin is
good or bad. The choice of where to probe next is left to the
operator.

UFI does not require a node list to be entered; GFl uses the list
to make probing recommendations. Since UF makes no
recommendations, the lig is unnecessary.

The UFI User Interface 5.6.2.

5-114

At the operator’s interface, U is invoked by using the GFI key
as described in the following section. Since the database was
compiled usng TROUBLESHOOT UUT for UH, the node list
was not included. When UFI probes a pin, it will not suggest
the next probing point as GFl may do. Ingead, the message
“UNGUIDED MODE" gppears on the display.

Pin Coverage:

11111111112222222222333333
12345678901234567890123456789012345

CLS 1 O . . v o e e e
Cl6e L1 . . e e e e e e
CL7 1 0o e e s s e
J5 I **I1II***7JI**771I1IIIIIIIIIIIIIIIIIIIIII
J 6 I
QL 1 2
Q2 O | o o
R10 Ol . . o o e e e e e e e
RI1L | O o o o e e e e
R12 10 e e s
0 L
82 e
Ul0 rrrrrrtrBlrirBlrirBBIIBI .0
Ull * I * I I II*III*QO0O0O*QBBBBI*OBBBB****(Q~*]
Ul2 CO0OIOQOIOOIOIIOIOII . vvv v v o n s o o o« a v v v o
u1l3 I Ol Ol OGOI Ol Ol P
uld o x* x QO ** * T **00000000000000000ITI0OO0T
mbol Meaning
I The pin is testable as an input only.
0 The pin is testable as an output
only. .
B The pin is testable as both an input
and an outpui. _
P The pin is testable as a power pin.
9 The pin is testable as a ground pin.

The pin is not testable (because it
has no associated stimulus
program or no known-good
response stored for this pin).

There is no such pin in the
database.

Figure 5-39: Pin Coverage Display for a UUT

5-115

Converting from UFI to GFI 5.6.3.

To convert from UFI to GHI:

Enter the UUT node lig.

Compile the UUT, sdecting TROUBLESHOOT UUT for
GFl.

Since GFl may require node responses for both the probe

and the I/O module, and since UFI may not have required
both, additiond response information may be required.
The compiler will identify nodes where this additiond
information is needed. Use the response LEARN
command to gaher this informeation, then compile the
UUT agan.

USING THE GFi DATABASE WITH TL/
FUNCTIONS 5.7.

5-116

TL/1 contains severa commands that interact with the GFI
database. These commands include dbquery, gfi, count, level,
gg, storepatt, and writepin.

The dbquery command dlows a TL/1 program to retrieve
information from the UUT database.

The gfi commands dlow TL/1 to interact with the resident
GFl software.

The count, leve, and sig commands alow a TL/1 program
to retrieve data for a pin.

The storepatt and writepin commands adlow a TL/1

program to overdrive a node with a sequence of patterns
sent through the 1/0 module.

The count, level, sig, storepatt, and writepin commands al have
a refpin option that dlows information to be requested using
reference designator pin names, such as "Ul-b4" or "connl-
azll}l".lz"l'he option dso supports numeric pin names, such as

If the refpin option is used, the UUT directory must contain a
compiled GFl database (named UFIDATA or GFIDATA). The
database contains information that allows the system to
determine which physical pin corresponds to the pin name.

If you are using the resident GFl software, the database that you
crested to peform GH contains dl the information that the
refpin option requires.

If you ae not usng GFl or UFI, you can create a minima
database by using the editor. This minimal database requires a
reference desgnator list and part descriptions, but does not
require’a node lis, simulus programs, or response files. To
creste a minimal database:

1. Use the editor to creste a reference designator list
(REFLIST) for the UUT. The reference designator
lis should contan an entry for each reference
desgnator that will be used in the refpin option. Fill
in the REF and PART columns.

The refpin option ignores the TESTING DEVICE
column.

2. For esch pat tha was named in the reference
desgnator lig, use the editor to create a part
description in the part library. In the information
window, fill in the NO. PINS and PKG fidds. In
the edit window, fill in the PIN NAME column if the
pat has pin names. If the pat uses numeric pin
names (such as "1", "2", "3", . ..). leave this column
blank.

The refpin option ignores the pin type and relaed
input pin information.

5-117

Use the editor to compile the UUT, selecting
LEARN RESPONSES for UFI. The resulting
database will contain al the information needed by
the refpin option, dthough it will be inadequate to
perform G FI.

Refer to previous paragraphs in this section for more detailed
information on how to edit the reference designator list and part
descriptions, and on how to compile the GFl database for a

UUT.

THE GFI USER INTERFACE 5.8.

5-118

At the operator’s interface, GFl provides a summary that shows
an overd| picture of what GFl has found and a suggestion list
that indicates the location a which backtracing should resume.
To invoke GFI at the operator’s interface:

1.

Press the GFI key on the operator’s keypad and use
the left arrow key to pogtion the cursor a the left-
mogt field.

Use one of the following softkeys to specify a
command. Figure 5-40 shows example displays for
complete commands. For detalls, refer to the
Technical User's Manual.

RUN: Executes GFl. Backtracing darts from the
specified location.

SUGGEST: Digplays the GH suggestion lig thet is
generated from previous GFl activity and shows
points at which backtracing can resume.

O

FEERT GFI UUT DENMO REF U227 FIN

‘N CLERR BSUGEESTRSUMNRRY] SSETUP -

Example 1: GFI RUN Command

HINT L2-2

Example 2. Results of the GFI SUGGEST Command (suggestion list)

FEF BAD THEZ BAL OUTES LIMENOLIN
Lz 5] 1 i3
i 1 5 5

Example 3: Results of the GFI SUMMARY Command

Figure 5-40: GFl User-Interface Example Commands

5-119

SUMMARY: Ligs the number of bad inputs, bad
outputs, and untested pins of each component that
has been tested. Figure 5-35 shows an example GFI
SUMMARY display.

CLEAR: Erases the GF summary and suggestion
list. Also can be done by executing a TL/1 gfi clear
command or by powering down the system.

SETUP: Enables or disables the automatic startup of
GFl. Also can be done by executing a TL/1 gfi
autostart command.

3. If you pressed the RUN softkey, the digolay will
instruct you to clip over or probe a component and
press the device' s Ready button when done.

4. Follow the displayed indructions of step 3. Figure
541 shows examples of GFlI recommendations

(resulting from step 3), which could take one of three
forms

GFl accuses the probed component.

GFl recommends where next to probe. Use the left
and right arrow keys to move the cursor to each pin
of the dislayed IC. A gatus message is shown for
each pin. Use the up and down arrow keys to scroll

through long messages.

GFl has no recommendations.

An operator who does not want to probe a the location
recommended by GFl can use the keypad GFI RUN command
to specify another location, based on knowledge of the UUT or
information from the suggestion lid.

Hints in the suggestion lig can be generated by any programs
that previoudy performed functiond tests on the UUT. These
hints are generated by the TL/1 gfi hint command.

5-120

G

o BAR op DUTRUT
A1 LOADED

Example 1: GFI Accuses Probed Component

CLIF U2?

BAD - DETRILDG |

Example 2: GFI Makes Probing Recommendation

MO RECOMMEMEAT TOM

GOOL /S OUTRUT

Figure

Example 3: GFI Makes No Recommendation

5-41: GFI User-Interface Example Recommendations

5-121

5-122

O

Section 6
Terminal Emulator

The termind emulator lets you use the programmer’s interface as
a 24-line by 80-column display terminal, to be connected to a
remote computer through one of the serid ports. With this
feature, you can trandfer files between the 9100A and other
computers (induding other 9 100A/9 105A machines). Such
tranders are useful for obtaining UUT information from CAD
sysems, for example.

ENTERING AND EXITING THE TERMINAL
EMULATOR 6.1.

Before dating the termind emulator, you must configure the
serid port that you will use as a communication channd. The
SETUP MENU key on the operator’'s keypad lets you set the
baud rate, parity, number of data bits and stop bits, protocol for
data flow control, and newline character. See the “Keypad
Reference’” section of the Technical User’s Manual for more
information about these port settings. The termind emulator
automaticaly operates in full duplex mode.

You should use flow control protocol to prevent the loss of
characters a high baud rates. (The 9100A sounds a beep when
it detects character loss) The flow control protocol must match
the setting of the computer at the other end of the communication

6-1

channd. The 9100A can implement software (XON/XOFF)
protocol, hardware (CTS/RTS) protocol, or both.

You invoke the termind emulator from the editor by pressing the
TERM softkey and sdlecting the name (/PORT1 or /PORT2) of
the seria port to use. To return to the editor, press the Quit key.

TERMINAL EMULATOR DISPLAY 6.2.

6-2

When you invoke the termind emulator, the monitor is cleared.
To turn on the information window, which is shown in
Figure 6-1, press the Info key. You set the termind mode and
tab stops with this information window.

While the information window is on, you can press the Help key
to display hep information. If the information window is off,
the Help key has no editor function, and pressing the Help key
causes a specid character code to be sent to the device that is
connected to the termina emulator.

When you turn the information window off (by pressng the
Info key), the keyboard and display send and receive characters
as atermind.

The 9100A collects input characters in a buffer. If the buffer
becomes full, the 9 100A automaticaly sends the signd required
by the flow control protocol to suspend input.

To exit the termind emulator, press the Quit key. Pressng Shift
and Quit dmultaneoudy will exit the editor directly to the
operator's keypad. Then the next time the editor is invoked, it
will return to the editor screen that invoked the terminadl emulator
the previous time.

: LINE TERMINATOR: CR

NSERT 3 :
AUTO WRAP: ON TEXT CURSOR: ON WAIT FORTERMINATOR: OFF 1 |
T T T T T T T T T
E‘%SB?BSOI2345878901234567890123456789012345678901234587880i234587890123456789?

= — 4 =1
RESTORE SAVE RECEIVE SEND ABORT

===

Figure 6-1 : Terminal Emulator Screen Example

6-3

6-4

The following fidds in the information window sgt the termind
modes. In al cases except for LINE TERMINATOR and WAIT
FOR TERMINATOR, you press the Field Sdlect key to set the
field to either ON or OFF:

INSERT MODE -If ON, an incoming character is inserted
a the cursor location and the characters to the right are
move one column to the right. If OFF, an incoming
character replaces the character at the cursor location and
moves the cursor one column to the right. The default
setting is OFF.

AUTO WRAP -If ON, when the cursor is a column 80,
an incoming character moves the cursor to column 1 of the

next line. If OFF, when the cursor is & column 80, it
remans a column 80. The default setting is ON.

AUTO NEW LINE - If ON, an incoming newline
character moves the cursor to the beginning of the next line
and the Return key outputs a carriage return and a linefeed.
If OFF, an incoming newline character moves the cursor to
the next line in the same column and the Return key
outputs a carriage return only. The default setting is OFF.

TEXT CURSOR - If ON, a blinking cursor gppears in the

display. If OFF, no cursor gppears. The default setting is
ON.

LINE TERMINATOR - When usng the send operdtion,
this fidd determines whether output is terminated with a
carriage return, a linefeed, or both. Press the Field Sdect
key to st this fidd to CR, LF, or CR/LF. The default
seting is CR.

WAIT FOR TERMINATOR - This fidd contains one of
four vaues. OFF, CR, LF, or CR/LFE. When the sting is
other than OFF, the emulator waits for a carriage return,

linefeed, or carriage return then linefeed before sending the
next line of output. The default setting is OFF.

* A tab sdting is indicated by a "T" in the line above the
column numbers line. Default tab stops are a every eghth
column. To set or clear a tab setting, postion the cursor at
the desired column in the line aove the column numbers
and press the Fdd Sdect key. (When you move the

cursor into the tab setting line, the cursor aways moves to
column 1.)

The INSERT MODE, AUTO WRAP, and TEXT CURSOR
modes can be changed by the remote system through incoming

sequences. These sequences are listed in the “Control
Codes for Monitor and Operator's Display” appendix of the
TL/1 Reference Manual.

TERMINAL EMULATOR OUTPUT 6.3.

The termina keyboard sends al standard, seven-bit ASCII
(ANSl X3.41-1974) key codes. To send the key codes from
hexadecimal 00 to 20, type the control sequences shown in
Figure 6-2. The softkeys, cursor control keys, and editor
keypad keys (except for Quit and Info) send the ANSI-
compatible escape sequences listed in Figure 6-3. The Quit and
Info keys perform their regular functions.

6-5

6-6

Control Key ASCI |
Sequence HEX DEG CHR
CTRL~@ 00 0 NUL
CTRL-A 01 1 SCH
CTRL-B 02 2 STX
CTRL-C 03 3 ETX
CTRL-D 04 4 EOT
CTRL-E 05 5 ENQ
CTRL-F 06 6 ACK
CTRL-G 07 7 BEL
CTRL-H or Back Space 08 8 BS
CTRL-1 or Tab 09 9 HT
CTRL-J OA 10 LF
CTRL- K 0B 11 VT
CTRL-L oc 12 FF
CTRL-M or Return oD 13 CR
CTRL-N OE 14 S0
CTRL-0 OF 15 ST
CTRL-P 10 16 DLE
CTRL-Q 11 17 DCL
CTRL-R 12 18 DC2
CTRL-S 13 19 DC3
CTRL-T 14 20 DC4
CTRL-U 15 21 NAK
CTRL-V 16 22 SYN
CTRL- W 17 23 ETB
CTRL- X 18 24 CAN
CTRL-Y 19 25 EM
CTRL-Z 1A 26 SuB
CTRL-[1B 27 ESC
CTRL-\ ic 28 FS
CTRL-] 1D 29 GS
CTRL-" 1E 30 RS
CTRL~ 1F 31 us

Figure 6-2: Keyboard Control Sequences

O

Key Sequence

Up Arrow

Down Arrow

Ri ght Arrow

Left Arrow

F1

Shift-F1

F2

Shift-F2

F3

Shift-F3

F4

Shift-F4

F5

Shift-F5

F6

Shift-F6

F7

Shift-F7

F8

Shift-F8

F9

Shift-F9

F10

Shift-F10

Edi t

Shift-Edit

Msgs

Shift-Mgs

Hel p

Shift-Help

Begin File
Shift-Begin File
End File
Shift-End File
Scroll Forward
Shift-Scroll Forward
Scrol | Backward
Shift-Scroll Backward
Begin Line
Shift-Begin Line
End Line
Shift-End Line
Field Select
Shift-Field Select

Figure 6-3: Keyboard Escape Sequences

Escape

ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

[

[
[

[
{
[
[
[
[
[
|
[
[
{
{
l
[
[
(
[
[
[
[
l
{
[
{
[

Sequence

O O d o TR O WOt DU WR OO 1T HWMN O @ o 9w - o

LI S §

r o+ r T2

PR T T S T)

¥ 2 ! or o *r 2 or o o opror o2

2

2

6-7

TERMINAL EMULATOR INPUT 6.4.

6-8

The termina accepts adl standard, seven-bit ASCIl key codes
and recognizes a subset of the ANSI 3.64 termind-control
sequences. All of the key codes from hexadecima 00 to 20 are
ignored except for ESC (escape), CR (carriage return), LF
(linefeed), BS (backspace) and HT (horizontd tab). These
codes are interpreted as follows.

® CR (OD) moves the cursor to return to the beginning of the
current line.

. LF (OA) moves the cursor to the next line in the current
column if AUTO NEW LINE mode is disabled. LF moves
the cursor to the beginning of the next line and scralls the
display when necessary if AUTO NEW LINE mode is
enabled.

. BS (08) moves the cursor one column to the left on the
current line,

¢ HT (09) moves the cursor forward to the next tab stop.

ANS 3.64 termind-control sequences are recognized by the
termina emulator. These include termind-control festures such
as enabling or disabling the cursor, moving the cursor, enabling
or dissbling AUTO WRAP mode, enabling or dissbling AUTO
NEW LINE mode, changing display attributes (bolding,
underscoring, blinking, and reverse video), and setting or
clearing tabs. Also, included are termind-control sequences for
insarting or ddeting a line, inserting or deleting characters, and
block erasing functions. A complete liging of dl avalable
termind-control festures and their associated terminal-control
sequences is provided in the “Control Codes for Monitor and
Operator’s Display” appendix of the TLII Reference Manual.
The actions associated with these control sequences are defined
in the ANSI standard.

O

FLOW CONTROL 6.5.

To suspend data input to the termina, either press the Scroll
Lock key or type a CTRL-S (press the CTRL-Z key and the
letter "S™" & the same time). To dlow input again, either press
the Scroll Lock key a second time or type a CTRL-Q. The
9100A automaticaly sends the appropriate sgnd for the flow
control protocol you have specified. For example, in a
CTS/RTS protocal, typing CTRL-S causes the 9100A to assert
the CTS ling in an XON/XOFF protocol, typing CTRL-S
causes the 9100A to send a CTRL-S to the other computer.

TERMINAL COMMANDS
(SOFTKEY DEFINITIONS) 6.6.

The softkey commands described below are available only to the
termind emulator:

RESTORE: This command sets the termind modes and tab
Setings to the default values stored on the system disk. (A
resore command is peformed automaticaly when you
invoke the termind emulator.)

SAVE: This command saves the current termind modes
and tab settings on disk. These settings will be used as
future default settings when the RESTORE softkey is
pressed.

SEND: This command prompts you for the full pathname
of atext, program, or nodelist file. You can then sdect the
format of the file usng the FHed Sdect key. If the file
exids, it is output to the serid port usng the current line
terminator and wait-for-terminator settings. To stop the
send operation, press the ABORT softkey or the Quit key
on the programmer’s keyboard.

RECEIVE: This command prompts you for the full

pathname of a text, program, or nodelist file. You can
then sdect the format of the file usng the Fidd Sdect key.

6-9

If the file exids, its contents are deleted and dl input
characters are dored in the specific file name. An
incoming carriage return, line feed, or cariage return and
line feed is dored as a single end-of-line character. To

sop the receive operation and close the file, press the
ABORT key.

¢ ABORT: This key stops a send operation or a recelve
operaion in progress.

TRANSFERRING FILES TO AND FROM
THE 9100A 6.7.

6-10

Through the termina emulator, programs, text files, and nodelist
files can be transferred between a 9100A and a remote computer.
Uploading files from the 9100A dlows you to modify programs
and other files (part, response, REFLIST, NODELIST, etc.) on
another computer. This frees the 9100A for debugging and
executing programs.

Since some 9100A files (for example, parts and responses) are
field oriented, modification on another computer should be done
by fird converting and uploading an existing file. This uploaded
file can be used as a template for cregting new files on another
computer. The entries in fidd oriented files must be in the
correct columns for the converson from a text file to another
type of file to be successful.

The following is the genera transfer procedure. If you ae
transferring a text file, program, or node ligt, skip steps 1 and 6:

Convert the desred file to a text file.

Upload the text, program, or nodelist file to another
compuiter.

Copy the file on the computer to a working file.
Make changes to the working file.

Download the working file to the 9100A.

Convert the downloaded text file to the proper type.

P N

O

O

Converting Files for Uploading
from the 9100A 6.7.1.

Before you upload a file that is not a text file, program, or node
file, it must be converted to a text file.

Text files can be stored in a UUT or USERDISK directorly and
copied to the part or program library directory using the full path
name specification. For example, a text file verdon of a pat in
the PARTLIB named “7400" can be copied to the USERDISK
directory usng the 9 100A COPY (softkey F4) function as
shown in the following:

FROM NAME /HDR/PARTLIB/7400 TYPE PART
TO NAME /HDR/7400 TYPE TEXT

These procedures can be reversed for copying (converting) a text
file to a part in the part library.

To convert a file, peform the following steps.

1. From the editor enter the COPY (softkey F4)
command.

2. At the FROM NAME prompt, enter the file name to
be converted.

3. At the TYPE prompt, use the Fidd Sdect key to
sdlect the type (i.e. REF, PART, etc.).

6-11

At the TO NAME prompt, enter the new name of the
file

5. At the TYPE prompt, sdect TEXT usng the Fied
Select key.

6. Press the Return key, and the file will be converted
to a text file that may now be uploaded to a remote
system.

General Upload Procedure 6.7.2.

6-12

Uploading from the 9100A requires the following steps:

1

Connect the 9100A RS-232 Port 2 and host device
(see Figure 6-4) or modem (see Figure 6-5).
Although both 9100A RS-232 connectors are wired
as DTE, use Port 2 (the earth-referenced port) for
connections to other computers.

Set up Port 2's baud rate, parity, data bits, stop hits,
and other parameters usng the SETUP MENU key
for PORT2 on the operator’s keypad. These
parameters must match the setup of the remote
compuiter. Use software handshake control
(XON/XOFF ENABLED; CLEAR TO SEND
DISABLED) for host computers and modems that
support this. If your host does not support software
handshaking, you must use CLEAR TC SEND
ENABLED hardware handshake control (see Figure
6-6). The 9100A monitors CTS (pin 5) to see if the
hogt device is asking the 9100A to hold sending of
data Typicdly this sgnd is DTR (pin 20) from the
host.

Use the EDIT key on the operator’s keypad to start
the editor.

Sdlect the gppropriate UUT directory where the file is
to exig after the downloading is complete (edit the
appropriate UUT directory).

HOSTIPC 91004
™ 2 _ » X < 2 ™
RX 3 - b ! RX
GND Z T Z GND

FLUKE Y1702, Y1703 OR Y1705
NULL MODEM CABLES CAN
DB-258 M DB-25

T~
() DB-25P DB-25P

_ Figure 6-4: Host to 9100A Connections - XON/XOFF Control

6-13

6-14

MODEM 9100A

. 2
< ™

RX 3 »- RX

GND z T GND
FLUKE Y1707 OR Y1708
INTERFACE CABLES
DB-255 vy DB-25S
DE-25P DE-25P

Figure 6-5: Modem to 9100A Connections = XON/XOFF Control

HOST 9100A

X 2 > - 2 ™
RX 3 - X - 3 RX
/ - 5 cTs
DTR 2 -
GND z T z GND
T NON-STANDARD CABLE T
DB-25s DB-25¢
c a5P DI 5P

Figure 6-6: Host to 91 OOA Upload Connections -
Clear to Send Control

6-15

6-16

10.

11.

Use the TERM softkey to enter the terminal emulator;
then use the Field Select key to select /PORT2. The
terminal emulator starts with the screen that last
selected TERM. (The screen is blank the first time
TERM is selected after the 9100A is powered on.)
Keys pressed on the keyboard are sent to the remote
computer and characters received are shown on the
monitor.

Using the termina emulator keyboard, instruct the
remote computer to receive the file to be uploaded.
Thisis caled “log” for some emulators.

Press the Info key on the keyboard. Change the
LINE TERMINATOR in the top line of the
Information Window as required by the remote
computer (use right arrow and Field Select key).
Then press the SEND (softkey F5) to select
uPIoadir]Ig. The SEND softkey Erompts for the name
of the file to be sent and then the type of file format
to be sent. The file type is TEXT, press the Return
key to start the transfer.

The file is transferred to the remote computer. The
characters are not displayed unless the remote
computer echoes them.

When the file has been transferred, the message
“Send Completed” is displayed.

Press the Info key to get back to the terminal
emulator mode. Send the file terminal character (eg.
CTRL-Z) to close the file.

Press the Quit key to return to the UUT directory.

O Uploading from the 9100A to a PC 6.7.3.

To upload a file from the 9100A to a PC, a terminal emulation

software package must be running on the PC. The 9100A is
used in the software handshake control mode (XON/XOFF
ENABL@ED). The PC and the 9100A are connected as shown in

Figure 6-4.

Set up the PC communication port (com1) to match the 9100A
default RS-232 parameters (9600 baud, no parity, 8 hits, and 1
stop hit) by initiating the following DOS “mode” command:

mode com1:96,n,8,1,p

The “p” flag sets the retry on timeout error mode. The flag
prevents the system from aborting the communication if the
9100A stals the transfer to prevent overrunning its buffer.

Refer to the “General Upload Procedure” for the step-by-step

uploading procedure. The DOS “copy” command does not

work for uploading. This command does not perform the

—. needed hardware handshake to hold off the 9100A from sending
U data to prevent the PC's buffer from overrunning.

Downloading Files to the 9100A 6.7.4.

The main benefit of downloading files is that a program or data
file can be written on another system, then transferred to the

9100A. Creating program or data files on another system frees
the 9100A to be used only for debugging and executing
programs. Text, program, and node files can be downloaded
directly to the 9100A. To download any other file type, it must
be downloaded as a text file and then converted to the
appropriate file type.

The general steps required to download files are as follows:

*]Ilransfer the file to the 9100A as a text, program, or node
ile.

6-17

¢ If required, use the COPY softkey to convert the text file
to the desired file type. Refer to “Converting Files that
have been Downloaded to the 9100A" for information on
the conversion.

General Download Procedure 6.7.5.

Downloading to the 9100A requires the following steps:

1. Connect the 9100A RS-232 Port 2 to the host device
(see Figure 6-4) or modem (see Figure 6-5).
Although both 9100A RS-232 connectors are wired
as DTE (data termina equipment), use Port 2 (the
earth-referenced port) for connections to other
computers.

2. Set up Port 2's baud rate, parity, data hits, stop bits,
and other _Parameters using the SETUP MENU key
for PORT2 on the operator's keypad. These
parameters must match the remote computer set up.
Use software handshake control (XON/XOFF
ENABLED, CLEAR TO SEND DISABLED) for
host computers and modems that support this. If
your host does not support software handshaking,

ou must use CLEAR TO SEND ENABLED

ardware handshake control. The 9100A asserts
DTR (pin 20) to hold up the host when needed.
Connect this signa to the signa(s) of the host that
will hold sending of the data (typicaly DSR, pin 6)
shown in Figure 6-7.

3. Use the EDIT key on the operator's keypad to start
the editor.

4. Select the appropriate UUT directory where the file is
to exist after the downloading is complete (edit the
appropriate UUT directory).

6-18

HOST/PC

™

RX

GND

RI 42___41__1
DSR ¢t «

DB-258

DE-25P

FLUKE Y1702, Y1703 OR Y1705
NULL MODEM CABLES CAN
BE USED

9100A
2 >
3 RX
20 DTR
7 GND
DB-258
DE* ~5p

Figure 6-7: Host to 9100A Download Connections -

Clear to Send Control

6-19

10.

11.

6-20

Use the TERM softkey to enter the terminal
emulator, and then use the Field Sdect key to sdlect
/PORT2. The termind emulator dats with the
screen that last selected TERM. (It will be blank the
firg time TERM is sdected after the 9100A has been
powered on.) Keys pressed on the keyboard are sent
to the remote computer and characters received are
shown on the monitor.

Press the Info key on the keyboard and then the
RECEIVE softkey. Enter the name of the file thet the
download data should be stored in and press the
Return key.

Use the Fidd Sdect key to sdect the desred file
format (text, program, or node) and press the Return

key.

If the desred file format is not a text, program, or
node, receive the file as text and convert it to the
desred file type. Refer to “Converting Files tha
have been Downloaded to the 9100A” for
information on the converson.

The message “Recelving” appears a the bottom of
the CRT. Press the Return key to remove the Info
Window and initiate the actual download.

The data scrolls by as the file is being received. At
this point every character being sent from the remote
computer to the 9100A is being stored in the
speaified file on the 9 100A.

Usng the termind emulaior keyboard, ingtruct the
remote computer ether to diglay the file to be
downloaded or to otherwise send the file to its serid
port. This command will be stored as the fird line of
the downloaded file since the receive operaion has
been started.

After the file has been transferred, press the Info key
and use the ABORT softkey to stop storing
characters into the file.

Press the Quit key to return to the UUT directory.

O Downloading Files from a PC to the 9100A 6.7.6.

The following three methods can be used to transfer files from a

PC to the 9100A:

. Using a termina emulator with software handshaking.
Insure flow control is setup for XON/XOFF.

. Using the DOS “print” command and software
handshaking.

¢ Using the DOS *“copy” command and hardware
handshaking.

USING A TERMINAL EMULATOR WITH
SOFTWARE HANDSHAKING

Set up the PC communication port to match the 9100A default
RS-232 parameters (9600 baud, no parity, 8 bits, and 1 stop hit)
by initiating the following DOS “mode’” command:

O mode com1:96,n,8,1,p

The "p" flag sets the retry on the timeout error mode. The flag
prevents the system from aborting the communication if the
9 100A dalls the transfer to prevent overrunning its buffer.

If you use a terminal emulator software package, the procedure
is exactly as outlined in the “ General Download Procedure”
using software handshake control (XON/XOFF ENABLED).
Most PC terminal emulator software packages have a “send file’

capability. Be sure to setup the file transfer to be an “ASCII”
transfer.

6-21

SENDING FILES TO THE 91 OOA USING THE
DOS “PRINT” COMMAND

6-22

Sending files to the 9100A using the DOS “print” command
requires the following steps:

1.

Set up the PC communication port to match the
9100A default RS-232 parameters (9600 baud, no
parity, 8 bits, and 1 stop bit) by initiating the
following DOS “mode” command:

mode com1:96,n,8,1,p

The F flag sets the retry on the timeout error mode.

The flag prevents the system from aborting the
communication if the9100A stalls the transfer to
prevent overrunning its buffer.

Connect the 9100A RS-232 Port 2 and the PC’s
communication port (com1) as shown in Figure 6-4.

Use the SETUP PORT2 XON/XOFF ENABLE and
SETUP PORT2 CLEAR TO SEND DISABLE
commands to enable software handshake control,
gr;g()gl‘isable hardware handshake control of the

Follow steps 3 through 7 in the “General Download
Procedure”. From the PC, enter the following
command to send the file to the 9100A:

print filename

where filename is the name of the file that is to be
sent to the 9100A. The first time the DOS “print”
command is used, it asks:

Nane of list device [PRN: 1

Type: coml
then press the ENTER key.

After the file has been transferred, press the Info key
and use the ABORT softkey to stop storing
characters into the file.

Press the Quit key to return to the UUT directory.

SENDING FILES TO THE 9100A USING THE
DOS “COPY” COMMAND

Sending files to the9100A using the DOS “copy” command
requires the following steps:

1

S

Set up the PC communication port to match the
9100A default RS-232 parameters (9600 baud, no
Parity_, 8 bits, and 1 stop bit) by initiating the
ollowing DOS “mode” command:

mode com1:96,n,8,1,p

The"p" flag sets the retry on timeout error mode.
The ﬁag prevents the system from aborting the
communication if the 9100A dals the transfer to
prevent overrunning its buffer.

Connect the 9100A RS-232 Port 2 and the PC's
communication port (com1) as shown in Figure 6-6.
The DTR line (pin 20) from the 9 100A must connect
to the PC'sDSR (pin 20) and RI (pin 22) linesto
alow the 9100A to hold the transfer when needed.

Use the SETUP PORT2 XON/XOFF ENABLE and
SETUP PORT2 CLEAR TO SEND ENABLE
commands to enabl e software handshake control,
and enable hardware handshake control of the
9100A.

6-23

4. Follow steps 3 through 7 in the “General Download
Procedure’. From the PC, enter the following
command to send the file to the 9100A:

copy filename com1:

Where filename is the name of the file that is to be
sent to the 9100A.

5. After the file has been transferred, press the Info key
and use the ABORT softkey to stop storing
characters into the file.

6. Pressthe Quit key to return to the UUT directory.

Converting Files Downloaded to the 9100A 6.7.7.

6-24

Command information in a downloaded text file should be
removed before the text file is converted to a file type that can be
edited on the 9100A. Removing the command information
involves editing the text file and removing lines at the beginning
or end of the file that were not part of the downloaded file. If a
terminal emulator “send file* sequence, or aDOS “copy” or
“print” command from a PC is used, command information does
not have to be removed, because no command information has
been received.

To convert the text file to another type of file, perform the
following steps:

1. Edit the UUT that contains the text file you wish to
convert to another file type.

2. Pressthe COPY (softkey F4). At the FROM NAME
prompt, enter the name of the text file to be
converted. At the TYPE prompt, press the Field
Select key to select the file type TEXT.

3. At the TO NAME prompt, enter the name of the file
after conversion. At the TY PE prompt, press the
Field Select key to select the file type (most likely
PROGRAM).

4. You can now use the 9100A's editor to edit the new
file. Any conversion error is flagged within the
newly created file. Any errors may be corrected
offline using a remote system, then repeating the
download/conversion process. Errors can also be
corrected directly on the 9100A, then
converted/uploaded (see the following paragraphs for
further information) to the remote system if you want
to have the corrected version on the remote system.

USING THE 9100A BULLETIN BOARD 6.8.

9100A users who have purchased a Software Support
Agreement have access to the Electronic Bulletin Board. Access
to the Electronic Bulletin Board allows 9100A users to
send/receive mail from other users and upload/download files
(programs, parts, etc.) that have been posted to the Electronic
Bulletin Board. Information about training and new 9100A
products are also posted.

The followin parafgraphs describe how to log in, download
files from, and send files to the Electronic Bulletin Board.

The Electronic Bulletin Board operates at 1200 baud, no parity,
8 data hits, and 1 stop hit.

Logging into the Bulletin Board from the
9100A Terminal Emulator 6.8.1.

To log into the Electronic Bulletin Board use the following steps:

1. Connect the 9100A RS-232 Port 2 to a modem as
shown in Figure 6-5.

2. Setupthe 9100A's RS-232 Port 2 to 1200 baud, 8
bits, no parity, 1 stop bit, and XON/XOFF enabled
using the SETUP MENU key for PORT2 on the
operator's keypad.

6-25

3. Move to the UUT directory that ¥ou are transferring
files to or from by editing the UUT.

4. Start the terminal emulator by selecting the TERM
(F5) softkey.

A modem is required to dial the access number of the
Electronic Bulletin Board. Type the following did
number command (Hayes compatible) to the modem,
then press the Return key:

ATD18008259100

This dids 1-800-825-9100 (the telephone number of
the Electronic Bulletin Board). Outside the U.S,, the
number is (206) 356-5957. The modem indicates
when the modem link is established.

5. After the Electronic Bulletin Board connects, you are
prompted for your first name, last name, and
password. Enter thisinformation and wait for the
Electronic Bulletin Board main menu. At this point
you have a series of options. The following sections
describe only the (U) Upload and (D) Download
opticns. All of the other options are menu driven
and are sdf explanatory.

Downioading Files from the Bulletin Board
to the 9100A 6.8.2.

To download a file to the 9100A from the Electronic Bulletin
Board use the following steps.

1. Enter the D (Download) menu or the M (Mail
System) menu.

2. If you are in the Download Menu, select the directory
from which you wish to download. Now select the
file number you wish to download.

3. If you arein Mail Menu, enter L (List) to obtain alist
of messages available.

6-26

10.
11.
12.

Enter the number of the message (file) you wish to
download.

Enter Y to sat up the download. In ether mode
(Download or Mail) you are now a the system
prompt that asks for an Enter (Return) to begin the
download.

Press the Info key on the 9100A Programmer’s
Keyboard. This brings up the soft key sdections.
Sdect the RECEIVE (softkey F4),

Enter the file name that will be created and press the
Return key.

Use the Fidd Sdect key to sdect the file type
(TEXT, PROGRAM, or NODE) and press the
Return key.

The message “Receiving” gppears a the bottom of
the CRT. Press the Return key to remove the Info
window and initiate the actud download. The data
will scroll by as the file is being received.

When the trander is complete, sdect ABORT
(softkey F6) to close the file on the 9100A.

To dgn off the Electronic Bulletin Board, initiate the
hang up sequence.

Exit the termind emulator by entering QUIT.

The received file will require some editing. Inspect the
beginning and ending of the file and ddete any bulletin board
commands that have been added to the file,

Save this corrected text verson of the file

Refer to “Converting Files that have been Downloaded to the
9100A" to convert the text file types to a dedred file type.
Program, text, and node file ty can be received directly
without converson, but al other tile types must be received as
text files, and then converted.

6-27

Uploading Files to the Bulletin Board
from the 9100A 6.8.3.

Text, program, and node files can be uploaded to the Electronic
Bulletin Board. To upload any other file type, it must first be
converted to atext file. Refer to “ Converting Files that have
been Downloaded to the 9100A" for information on the

conversion.
To upload a file to the Electronic Bulletin, use the following
steps:

1. Log on to the Electronic Bulletin Board as shown in
“Downloading Files from the Bulletin Board to the
9100A."

2. Select the U (Upload) menu. Press U then the
Return key.

3. Sdect U (Upload) to upload to the system operator,
or 'Ist?loeCt (Mailbox) to upload to the system
mailbox.

4. Enter a name for the file to be uploaded. The system
is now ready to receive the file.

5. Onthe9100A Programmer’s Keyboard, pressthe
Info key to bring up the Information Window and the
soft key options. Change the Line Terminator in the
Information Window to CR/LF (carriage return/line
feed) EP/ using the arrow key to move to the field and
the Field Select key to change the field.

6. Pressthe SEND (softkey F5). Enter the name of the
text file to be uploaded to the Electronic Bulletin
Board and press the Return key.

7. Usethe Field Select key to select the file format
(TEXT, PROGRAM, or NODE) and press the
Return key to initiate the transfer of the file. The data
is not displayed as it is sent because the Electronic
Bulletin Board does not echo them. When the
transfer is complete, the 9100A reports “Send
Completed”.

6-28

Press the Info key to remove the Information
Window.

Type a CTRL-Z to close the file that has been sent to
the Electronic Bulletin Board.

If the file was uploaded to the system operator, the transfer is
complete. If the file was uploaded to the mail system, continue
with the following steps:

1.

The system now prompts for a subject. Enter a
suitable subject.

The system now prompts for the name of the person
the file is to be sent to. Enter the first and last name
on the same line. It must match exactly the name of
user.

Sign off the Electronic Bulletin Board by initiating a
hang up sequence.

Exit the termina emulator by entering QUIT.

6-29

6-30

O

Section 7

CAD Translator

INTRODUCTION 7.1.

The CAD Trandator (also referred to as CADTrans) is a
software package that converts CAD output files into a
9100A/9105A node list and a reference designator list which are

readable by Guided Fault Isolation (GFI), the 9100A editor, and

other 9100A/9 105A applications.

Section 7 begins with an overview of the CAD Trandator. The

output file downloading procedure is described using a step-by-
step process that includes illustrations of the 9100A monitor

screen. The optiona files prompted by CADTrans are
explained, and examples of name trandation (aliasing) are
included. The section ends with an explanation of the regular

expression grammar used to match part and reference name
patterns to transform CAD output file format to legd 9100A

NODELIST and REFLIST format.

7-1

OVERVIEW OF THE CAD TRANSLATOR 7.2.

7-2

Figure 7-1 shows an overview of the CAD Trandator process
and the files which are associated with it. The CAD Trandator
trandates CAD information from a CAD output file format into a
9100A/9105A-usable format. After the necessacy CAD files
have been downloaded to the 9100A/9105A (see paragraph 7.3),
the CAD Trandator is invoked to trandate CAD system-specific
output files to 9100A/9105A Reference Designator List
(REFLIST) and Node List (NODELIST) formats. Because of
the digolay limitations on the 9100A/9105A front pand, part
names can be only 10 characters long and reference designators
are limited to 6 characters. There are dso limitations on the
characters that are allowed. For example, the characters "-" and

"\" are not dlowed in a reference designator or a part name. The

CAD Trandator alows you to specify rules that help meet
9100A/9105A requirements for REFLIST and NODELIST files,
and automaticaly truncate long reference designators and part
names to ther maximum length.

In addition to providing help when trandating the CAD system
output files to a format acceptable by the 9100A, the CAD
Trandator dso helps speed programming by providing other
features. The most useful of the festures is part name diasing.
The pat library contans information on device types and
pinouts. The library is keyed by the part name as described in
the REFLIST file on the 9100A. Because the device pinouts are
the same for functionally identical parts using different
technologies (i.e., "7400", "74LS00", "74C00", etc.), the
9100A/9105A can use asngle entry in the library to cover dl of
the devices of a type (in this case a quad NAND gate).
CADTrans assdts its user by dlowing diasang of pat names so
dl of the smilar parts can be coerced to a sngle name. In this
example, “7400" would be a likely library name choice.

Aliasng is a mechaniam that dlows for specification of a pattern
as a search string (see paragraph 7.5) and another pattern as a
replace dring. Search patterns and replace patterns aways come
in pairs. one specifies the pattern to be searched for and the other
is the type of replacement that is to done on that gring. For
example, the search pattern may be something like, “All parts
darting with ‘74 and ending in numbers should be tagged.” The
replace pattern corresponding to the search pattern

O
REFUIST
o | | o | [ET0 | som | [
BD:;@ > waotine | cap | || TERMINAL gl FILEON
sverem| |EMULATOR 9100A
NODELIST
gooTTTEEET H CADTRANS
: PIN]
| SUBSTITUTION L———d|-~-2
' FILE :
1 [}
o or -
N i PART |
o ! ALIAS e
i reeny : FILE H [ommmeeemms
' < OPTIONAL S a—— | cHECK !
emet iyt 3 -y ™ usTRLE
| ABSENT | f
, PART Lumcdan) I,
| ALIAS FILE |
| A
PR
| REFERENCE 1
. PART bocaimma)
| ALIASFILE
L R
CONFIGURATION SAVE FILE
:\ Figure 7-1 : CADTrans Process

7-3

may be, “Throw away everything between the ‘74 and the
ending numbers and write the result to the output file.” The
results of running the string "74ALS00" through this aliasing
pattern would be “7400." Likewise, since we generalized the
rule to handle all 74-series parts, the string "74L.S273" would
result in "74273", etc. Aliasing may be used to change reference
designators to legal 9 100A names, to change part names to legal
9100A names, and to assign part names to parts without names
in the CAD sourcefile based upon the reference designator.
(Information regarding the detalls of aiasing can be found in

paragraph 7.5.).

TRANSFERRING A CAD OUTPUT FILE
TO THE 9100A 7.3.

CADTrans expects the downloaded file to be available to the
9100A filesystem as a file of type TEXT. Refer to paragraph
ﬁ.?. for the general process of transferring a file from a remote
0St.

USING THE CAD TRANSLATOR 7.4.

CADTrans is executed by pressing the F9 key while editing a
UUT directory. To execute CADTrans successfully, the UUT

being edited must not contain a REFLIST or NODELIST, and a
downloaded CAD file must be available. After the FO key is
pressed, you are prompted for input file names. The majority of
the file names are optiona. If you type the name of an input file
that does not exist, or you type an output file with an invalid
path name, CADTrans asks you to re-enter the file name. After

entering the correct information, CADTrans automatically creates
a REFLIST and a NODELIST that reside in that UUT directory.

The following paragraphs summarize the input files that are
prompted for and their use.

O Required Inputs 7.4.1.

The following inputs are required in order to use the CAD
Trandator:

o Sysem Type
L Source File name

System Type = Sysem Type is a prompt tha requires the
name of one of the supported CAD sysems. No file name is
required. Press the HELP key to obtain a summary of currently
supported CAD systems. The name of the CAD system must be
entered. (It must maich the spdlings used in the HELP
window.)

Source File Name - The Source File Name is the downloaded
text file from the origind CAD sysem. CADTransrequires an
unedited verson, direct from the CAD sysem. This is the only
O required file, the following files are optiond. As with dl of the
other input files if a smple file name is entered, CADTrans will
assume it is a file of type TEXT in the current UUT. If a file
path is entered, CADTrans will look for a file of type TEXT a
the location specified by the path.

Optional Files 7.4.2.

The following files are optiona for use with the CAD Trandator:

i Configuration File
i Pin Subditution Fle
* Pat Alias File

7-5

. Absent Part Name Alias File

y Reference Alias File

. Output Check Ligt File

i Name of Configuration Save File

Configuration File

7-6

The configuration file is an optiond file that dlows you to
execute a CADTransset-up configurdtion. It is a text file
contaning a number of keywords followed by file names,
denoting which files CADTrans should use during its execution.
The following example shows how a configuration file might
appear when viewed with the editor:

SYSTEM! SCICARDS?
INPUT! mai n_brd3
PARTALIAS! parts?
PINSUB! ABRSENTPARTS!

REFALTIAS!
CHECKLIST! check?

1 denotes keyword

2 denotes name of CAD system

3 denotes name of CAD outptt file
4 denotes file name

If the name of the configuration file is entered at the
configuration file prompt, CADTrans uses the filenames after the
keywords as if you had entered them in response to a CADTrans
prompt. The configuration file may be edited usng the 9100A
editor. The file names contained in the configuraion file can be
changed, but the keyword names mugt reman the same. If a
keyword agppears with no file name (as in Fgure 7-2 for
PINSUB, ABSENTPARTS, and REFALIAS), CADTrans

assumes that you are not usng the option associated with the
O missng file name and continues its execution. If a keyword
’ does not appear at dl in the configuration file, you are prompted
for the missng keyword during CADTrans start-up. Not al of
the keywords shown in the Configuration File example need to
appear in the configuration file, nor do they need to appear in

any particular order.

Pin Substitution File

Mogt users will not need the Pin Subgitution Fle It is an
optiond file that is entered only if pin names are to be changed to

lega 9100A numbers, or if you wish to change the pinout on a
UUT pat to match the definition in your part library. To create
a pin subditution file, begin by editing a new text file. For each
pat for which you wish to change the pinouts, type the part
name when prompted, followed by a space and a ligt of the pins.

The order of the ligt determines the pin numbers assigned in the
node lis. The following example is an entry used to change the
pin names on a 24 pin connector.

24-PIN 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A\
1B 2B 3B 4B 5B 6B 7B-8B 9B 10B 11B 12B

If pin 1B appeared in the CAD output file, it would be assigned
to pin number 13 in the 9100A node lig, (1B is in the 13th
pogtion of the pin li). The "\" character is used to denote the
continugtion of a pin lig to the next line. If you wish to include
comments with the pin configuration, begin the comment line
with a"t " character.

7-7

Part Alias File

The Part Alias file is an optiond file that is used to change part
names from the CAD system’s naming conventions to legd part
names which gppear in the 9100A part library. Legd part names
ae 1 to 10 characters in length and may contain any of the
following characters

A through Z (uppercase)
a through z (lowercase)
0 through 9

o

LR

The part dias file uses regular expresson grammar to meaich
patterns in part names and reference desgnators and transform
them into a different pattern recognizable by the 9100A.

Absent Part Name Alias File

7-8

The Absent Pat Name Alias file is an optiond file that fills in
missing or absent part names in the CAD source file and uses the
same format as the part dias file. The file looks at the reference
name of parts with blank part names. A search string matches
the reference name and the pat name is filled in with the
replacement dring. This file is useful for capacitors, ressors,
and other parts that are given reference designators like "C12"
but no part description name.

@

Reference Alias File

The Reference Alias file is an optiond file that modifies
reference designator names to legd 9100A format. This file has
the same format as the part dias file. For more information on
dias file format see paragraph 7.5. Reference names are from 1
to 6 characters long, and may contain the same characters listed
in paragraph 7.6. The characters must begin with a letter or
digit, and are case-insendtive.

Output Check List File

If atext file name is entered, the Output Check Listfile is written
in text format in the current UUT directory. The file dlows you
to check diasng by writing out al pat diases, aisent part
diases, and reference diases that occur during the trandation.
Also the file dlows you to quickly check for inaccurate or
ambiguous diases. Warning and error messages are written to
this file and to the screen.

NOTE

To avoid errors when using GFI you should
examine the output check list file when using
CADTrans.

Name Of Configuration Save File

The Name Of Configuration Save file is an optiond output file
that contains dl the file name parameters that are currently being
used by CADTrans. A prompt “Name Of Config Save File’
gopears only if a configuration file name has not been previoudy
entered a the beginning of CADTrans execution. If a file name
is entered a the prompt, a configuration file is written by
CADTrans in text format to the current UUT directory. The next
time CADTrans is executed, you are only required to enter the
configuration file name.

7-9

ALIAS FILE FORMAT EXAMPLES 7.5.

7-10

The three types of dias files (Part, Absent Part, and Reference)
follow the same format of aternating search and replace lines.
Comments are legd, and may be placed anywhere in the file if
preceded by a"t " character. The following is an example of the
dias file format:

I This is a conment
SEARCH <regular expression>
REPLACE <regular expression>

The keywords SEARCH and REPLACE must be al upper case,
and a space must separate the SEARCH and REPLACE from the
regular expresson. The order of regular expressons determines
the priority of the dias rules. The fird rule that matches is used
for the dias. The most specific diasing rules should be listed
fird, continuing to the mogst generd dias rules that affect the
greates” number of parts lised at the end of the dias file. Alias
files ae crested and edited usng the 9100A editor, or
downloaded usng term. Alias files are of type TEXT, and there
may be up to 50 dias rules associated with each dias file,

The following Pat Alias file examples use rules (Figure 7-2)
that change CAD output file part names to 9100A part names.
You can use these dias rules as shown, modify them for your
gpplication, or create new ones of your own.

| Use this rule for converting LSxxx parts to
, I 74xxx

SEARCH ~LS\ ([0-91+\)
REPLACE 74\1

! Use this rule for converting ALSxxx parts to
I 74xXxx

SEARCH ~ALS\ ([0-91+\)
REPLACE 74\1

I Use this rule for converting SNxxx to 74xxx

SEARCH ~SN\ ([0-91+\)
REPLACE 74\1

I Use this rule for converting HCxxx and
I HCTxxx t0 74dxxx

SEARCH ~HC["0-9]1*\ ([0-9]+\)

REPLACE 74\1
- ! Use this rule for converting parts ending in
‘ } ! Ktoresistor (ex. 10K, 5K)

SEARCH K$
REPLACE RESI STCR

! Use these rules convert any 1, 2, or 3-digit
' nunmber parts to RESISTOR

(continued on the next page)

:\ Figure 7-2: Part Alias File Examples

SEARCH ~[0-91%
REPLACE RESI STOR

SEARCH #[0-9]1{0-9]1%
REPLACE RESI STOR

SEARCH ~[0~9] [0-9] [0-9]%
REPLACE RESI STOR

! Use these rules for converting names with uF
I or pF to CAP

SEARCH uF
REPLACE CAP

SEARCH pF
REPLACE CAP

Figure 7-2: Part Alias File Examples (continued)

O

The Absent Part Alias file dlows you to use SEARCH srings to
locate the reference names and add part names that are missing
from the CAD output file. You can use the following examples
as a guide for writing rules to fill in missng part names in your
dias file

I' Use this rule to convert reference nanes

I beginning with C and followed by nunbers

| into CAP (example: C, €10, and C113 to CAP.
' Mssing part nanes only).

SEARCH C[0-9]+
REPLACE CAP

I Use this rule for reference names beginning
I in R to resistor.

SEARCH R([0-91+
REPLACE RESI STOR

The Reference Alias file dlows you to change CAD output file
reference names to legal 9 100A reference names. When maki
dias rules for the reference designators, make sure that eac
reference name is unique. Avoid making rules that are
ambiguous. Also, determine if the proper diases have been
made in the output check file You can use the following
examples as a guide for reference diases.

I Use this rules to change illegal "-"
!' characters to legal ™_" characters.

SEARCH \ (["\=1%\) =\ (. *\)
REPLACE \1_\2

!l Use this rule to change illegal "/"
characters! to legal "."™ characters.

SEARCH \ (["\/1*\) /\(.*\)
REPLACE \1.\2

7-13

] asavv) ww

REGULAR EXPRESSIONS 7.6.

7-14

Regular expressons are used in dias files to match patterns in
part names and reference designators and transform them into a
different pattern recognizable by the 9100A. The regular
expresson andyzer implemented in CADTrans can describe
amost any set of characters possible. If you are just beginning
to use regular expressions, they are used a a amplified levd.
The following regular expressons progress from the smplest
expressons to more advanced expressions.

The smplest form of regular expresson is a direct, one to one
correspondence between the SEARCH expresson and the part.
For example, the dias entry:

SEARCH ALSOO0
REPLACE 7400

The search datement finds every pat with the identification
ALSO0 and replace it with 7400. This accomplishes the required
replacement, but a more generd regular expresson would cover
every ALS pat and not just ALSOOC:

SEARCH ALS\ { [0-9] +\)
REPLACE 74\1

Notice how this dias rule finds any part with a name containing
ALS and replaces it with 74 dong with the part number found
dter the ALS. The grouping characters "\(\)" identify the
portion of the string used in the REPLACE gatement; the [0-9]
identifies that portion as one or more numeric characters, and the
\1 appearing in the REPLACE dring directs the new part name
to be filled with the contents of the grouping characters.

SEARCH \ (["\=]1*\) =\ (.*\)
REPLACE \1_\2

In the search and replace strings above, the SEARCH diring firgt
reads all characters that are not a "-" character (“not” is denoted
by the "A" character preceding the "\ character).

.
\
\

NOTE

A "\" character is placed before the "-”
character as a literal and not a set range of
characters delimiter.

When the search dring finds a "-" character, it is read in and
i%nored, because it is not contained in a \(\) grouping. Trailing
characters are read into a second grouping o they may be
restored in the replace gring. The replace string recals what
was read into the firg grouping with a \1, followed by a "_"
character to replace the "-" character. \2 follows the "_"
character and recdlls the last grouping read by the search string.

The types of characters used in a regular expresson (including a
description of each) are listed in Figure 7-3. With the
description is an example to show how the character is used to
successfully write rules to convert CAD output file format to
9 100A file format.

7-15

char

Description

Matches itsdlf, unless it is a specid
character (metacharacter): ".", "\",
ll[ll, H]H, Il*ll, ll+|l’ HAH, Il$ll.

Example: Convert 74S00 to 7400

SEARCH 74500
REPLACE 7400

Matches the character following it, except
when followed by a left or right
parentheses (), a digit (1 to 9), or a left
or right angle bracket « > A "\"
character can be used to literdize a
character, such as itsdf for searching.

Example: \\ searches for \

Any regula expresson liged in this
example group followed by the closure
character "*", maches zero of more
occurrences of that form.

Same as "*" above, except it matches one
or more expression liged in this example
group. Used in dias files to specify the
search and replace rules.

Example: Convert 74S00 to 7400

SEARCH 7450+

REPLACE 7400

' Replaces one or nore

I occurrences of 0 with 7400

(continued on the nextpage)

Figure 7-3: Regular Expression Characters

[set]

[a-z]
["]-]
[“A-Z]

[a-zA-Z]
QY

Matches one of the characters in the sat.
If the first character in the set is "A" it
matches a character not in the set. A
shorthand [E-§] is used to specify a set of
characters E up to S, inclusve The
gpecid characters "]" and “-" have no

goecid meaning if they gppear as the firg
characters in the set.

Example: Convert 74500, 74LS00,
74co0 to 7400

SEARCH 74 [SLC]+00
REPLACE 7400

Matches any lowercase dpha
Matches any character except "]" and "-".

Matches any character except uppercase
apha

Matches any dpha

A regular expression listed in this
exanple shown as \(form\), matches
wha the expresson “form” matches.
The enclosure creates a set of tags, used
for replacement. Replacement enclosures
are numbered darting from 1.

(continued on the nextpage)

Figure 7-3: Regular Expression Characters (continued)

7-17

7-1 8

A$

<>

A "\" followed by a digit 1 to 9 matches
whatever a previoudy enclosed \()
search regular expresson matched.

Example: Convert 74Sxxx, 74LSxxx,
74AcxXxXX 10 74xxX

SEARCH 74[SLCI+\ ([0-9]+\)
REPLACE 74\1

A regular expression starting with a
"A"character and/or ending with a "$"
character, redtricts the pattern matching to
the beginning of the line, or the end of
line. The "A" and "$" characters are
treated as ordinary characters in any other
location of the pattern.

Example: Convert LSOO to 74LS0O0
without confusng an exiging 74LS00.
To obtain an incorrect result of
74741.S00.

SEARCH “\ (Ls [0-9] +\)
REPLACE 74\1

Matches where a word is delimited by
whitespace.

Example In the sentence, the sx brown
mice are in a row. Row appears twice,
but you want to match on the word row
itsdf, use \<row\>.

Figure 7-3: Regular Expression Characters (continued)

N

SUGGESTIONS FOR USING

j THE CAD TRANSLATOR 7.7.

To use CADTrans effectively, first use CADTrans on the CAD
ou(tfut file with no file modifications. Then, if any errors occur,
add a part alias file or a pin substitution file that contains rules to
correct these errors. The translation becomes an iterative
process consisting of trandating the output file, identifying the
errors, creating rules to correct the errors, and repeating the

Iorocess until all errors are corrected. The reference designator
ist and node list are the result of executing CADTrans. The
node list is checked first for any errors during the trandation

process. Correct the errors using the optional aliasing files.

Once the node list requires no further modification, the reference
designator list may need some changesto alleviate possible
errors with part name syntax. If you notice part name errors that
occur frequently, (for example: ALSOO instead of 7400), the
following example solves this error:

1. Edit the part alias file.
2. Type in:

SEARCH ~[ALS]+ {[0-9] +\)
REPLACE 74\1

The search string looks for one or more occurrences of ALS and
one or more occurrences of a number O through 9. The replace
string converts the CAD output file format into a format
recognizable by the 9100A. If a part name error occurs only
once or twice in the entire reference designator lit, it is easier to

change the error manually, than to create a new rule.

NOTE

When making manual changes to reference
designator names in ether the node list or
reference designator list, make sure the same
change. is made in both the node list and the
reference designator list.

7-19

SUPPORTED CAD SYSTEMS 7.8.

Futurenet*, Scicards®, and Cadnetix* are the CAD systems
supported by CADTrans. The output files of these systems are
downloaded to the 9100A using the temind emulaor (the
TERM softkey in the USERDISK directory screen or a UUT
directory screen).

NOTE

The output from the CAD systems must not
be altered. Any changes in the file output
format could cause CADTrans to fail.

Each CAD system paragraph contains an example of an output
file. Snce CAD systems produce many output files, compare
the CAD output file with those in the following sections to make
sure you are using the correct file from your CAD system.

+
The following are trademarks of their respective companies: Cadnetix of Cadnetix Corporation, Futurenet of
Futurenet Corporation.

Scicards is a registered trademark of Scientific Calculations Incorporated.

7-20

G

Futurenet 7.8.1

CADTrans supports the NETLIST format created by Futurenet.
Refer to your Futurenet manud for specific indructions on

creeting NETLIST output files. The fallowing is an example of
Futurenet output file format:

NETLIST, 2

(DRAWING, \DASH3\BOARDEX1.DWG, 1-1
DATA, O, SHT- 2
DATA, O, RAM 8K x 16 @ 00000
DATA, O, ADDRESS ~ DECODER
)

(sYM, 1-1, 82
DATA, 2,C13
DATA, 26, 1
DATA, 24, 4
)

(SYM, 1-1,17
DATA, 2,U12
DATA, 3, ALS00
DATA,103,1
)

(SI1G,,RESET,1,,
PIN,1-1,25,C13,23,1
PIN,1-1,41,Ul2,23,2
)

(81G,,+5,1,,
PIN,1-1,25,C13,23,2
PIN,1-1,33,U12,23,1
)

7-21

Scicards 7.8.2

CADTrans supports output files from the Scicards system when
the “LIST PINS FULL ALL" option is used. The x-y
coordinate podtions are not necessary, and are ignored. Thé
following data is an example of Scicards output:

SN7414 Ul 1 41 0.3125 5.1125
SN7414 Ul 2 28 0.3125 5.0125
SN7414 Ul 3 18 0.1325 4.9125
SN7414 Ul 4 5 0. 3125 4.8125
SN7414 Ul 5 55 0.3125 4.7125
SN7414 Ul 6 53 0. 3125 4.6125
SN7414 Ul 7 12 0.3125 4.5125
SN7414 Ul 8 13 0.6125 4.5125
SN7414 Ul 9 22 0.6125 4.6125
SN7414 Ul 10 1 0.6125 4.7125
SN7414 Ul 11 49 0. 6125 4.8125
SN7414 Ul 12 57 0.6125 4.9125
Cadnetix 7.8.3.

7-22

The Cadnetix compilation process produces a standard parts list
and a net lig. The following shows a sample Cadnetix output
file

PARTS LIST
TESTPAT, 1 TESTPAT, 1 TP101

C1206v,0.01UF X €10 C11 €12 €13 Cl4 C15
R1206V, 200K X RO R1 R22 R23 R4 R10
S020V, IC,ALS244 X Ul U2 uls

S016V, IC,ALS668 X uld u22

ECS

NET LIST

NODE 1 $ **%x050157-1-3

Ulg 1 U1l 10
NODENAME NC $
Cl01 131 C51R01R31Ul1S8%$
U2 3 U18 8
NODE 2 $ ***%050158-1-2
R10 2 Cc11 2 U18 6
ECS

O
1‘_//

Section 8
Glossary

If you cannot find a term in the glossary, search the index for ,a
reference to that term.

Active Edge . :
A signal transition used to initiate action.

Address Decoding o _ _
The conversion of address bits into a signal that activates a
component or components.

Address Mapping _
The correspondence between addresses and components in the
UUT.

Aliasing
A condition where a component address responds to more than
one combination of address bus bits.

Assert _ _
To cause a signal to change to its logical “true’ state.

Asynchronous

Not synchronized to the microprocessor or not synchronous to
any clock signal.

8-1

Automated Test
An automated activity that verifies the correct operation of a
circuit by comparing its output to the expected output.

Automated Troubleshooting
An automated process of locating a fault on a UUT.

Backtracing

A procedure for locating the source of a fault on a UUT by
checking logic dong a logicd path from bad outputs to bad
inputs until the point where no bad inputs are found.

BASIC
An acronym for Beginner's All-Purpose Symbolic Ingruction
Code.

Bit Logical
Conddering each bit of a vaue, rather than the vaue as a whole,
to perform a logicd operation.

Block
A group of program lines deimited by a beginning statement and
an ending statement.

Buffer

1. In software, a dtorage area for holding characters until a
device is ready to accept them. 2. In hardware, a component
that drives an output identical to its input. A hardware buffer
provides electricd separation between two or more other
components.

Built-in Test
Functiond tests built into the 9100A/9105A that test the bus,
ROM, and RAM.

Bus
A group of functiondly Imilar dgnds

CAD
An acronym for Computer-Aided Desgn. CAD systems let the
user create, manipulate, and store designs on a computer.

Case-Sensitive
Capable of distinguishing between upper-case and lower-case
characters.

Channel o _
A means for communication of data from one location to
another.

Comment . _
Text in aprogram that is not executed. A comment in aTL/1
program or a node list must begin with an exclamation point (!).

Component
A passive or active part on a UUT.

Conditional Branching
The execution of particular statements based on the value of a
logical expression.

Continuation Character
In the editor, a character that indicates that the next lineisa
continuation of the same statement, not a new statement.

Control Line
A signal that comes out of a microprocessor and is used to
control the UUT.

Control Sequence

A combination of the CTRL key and another key. When these

keys are pressed smultaneously, a single key code is produced.

8ontrol sequences are noted in this manua as CTRL-S, CTRL-
, EtC.

CRC Signature

CRC is an acronym for Cyclic Redundancy Check. A CRC
sgn%ture IS a compression of a long data stream into a 16-hit
number.

Cursor

A symbol on adisplay (usually abox or an underscore) that
indicates where a typed character will appear.

8-3

8-4

Cursor Control
Mechanisms that control the location and movement of the
Cursor.

Data Bus _
A st of dgnd paths on which padld daa is trandferred
between two or more devices.

Data Type
In TL/1, the avalable data types are numeric and string. Both
numeric and string types can be used in arrays.

Declaration
A daement that sets scope, data type, or default vaue of a
vaiadle

Default Value
The vaue given a varigble if no other vaue is ecified.

Device

1. Refers to the probe, an 1/0 module, a reference designator,
or the pod. 2. Also used with I/O operations to specify a port
or adisk drive.

DIP
An acronym for Dud In-line Package. A DIP has an equd
number of pins on each of its long Sdes. See dso SIP.

Directory
A callection of related sets of data (files, for example) on a disk.

Drivability
Tegting whether lines can be driven to the gppropriate active high
or active low levd.

Dynamic Coupling
Data in one memory location is affected by combinations of data
in other memory locations.

Edge
The trandtion from one voltage levd to a different voltage leve.

Exerciser
See Fault Condition Exerciser.

Expression
A combination of symbols and names that can be evauaed
(according to TL/1 syntax rules) to yidd a vdue.

External Synchronization
Synchronizing a node response measurement usng Sgnas
externd to the pod.

Fault
A defect in a UUT that causes circuitry to operate in a manner
that is inconggent with its desgn.

Fault Condition
A recognition by the 9100A/9105A tha a fault exiss on the
UUT.

Fault Condition Exerciser

A group of statements that attempts to repetitively reproduce the
conditions that generate a fault condition. (Sometimes caled just
an “exerciser. ")

Fault Condition Handler
A group of dtatements that is executed when a paticular fault
condition occurs. (Sometimes cadled just a “handler.”)

Fault Condition Raising
The generation of a fault condition ether from detecting a fault
on aUUT or from usng a TL/1 fault statement.

Feedback LO%R _ o
A dircuit in which one or more outputs is routed to the circuit's

input.
Fill-in Field

An area of the monitor or the operator’s display, usudly shorter
than a sngle ling, into which characters can be entered.

8-5

8-6

Forcing Line
Input to the microprocessor that forces it to a particular known
state.

Format Picture
A character string for formatted input or output that represents
the format for a sngle vdue.

Format String
One or more format pictures which represent the format for a
series of vaues. See dso Format Picture.

Functional Test
An activity that verifies the correct operation of a circuit by
comparing its output to the expected output.

GFI
See Guided Fault Isolation.

GFI Summary
A record of the components that have been tested by GFI.

Global Variable
A vaiable whose name and vdue are vaid indde and outsde of
the invocation of the block in which the variable is declared.

Guided Fault I solation
An dgorithm that uses backtracing to troubleshoot a UUT.

Handler
See Fault Condition Handler.

Hexadecimal
Pertaining to the base 16 numbering system. (Often abbreviated
as“hex.")

1/0

An &bbreviation for Input/Output. The transfer of data to and
from devices other than the locad memory of the microprocessor
system.

/O Module _
An option for the 9100A/9105A that allows simultaneous
stimulus or response for multiple points on a UUT.

Implicit Declaration _ _ N o
A declaration assigned to a variable if no explicit declaration is
given. See also Declaration.

| nvocation _ _
The execution of a program, function, handler, or exerciser
block. Each invocation maintains its own set of local variables.

K eyword _ _
The name of a value used in keyword notation of a TL/1
command.

Keyword Notation _
The specification of arguments by name and value, in an
arbitrary order.

L abel
A string that identifies a line.

L evel History _
A character string that represents a record of the logic levels
measured at a point over a period of time. "1", “X", and "0"

represent high, invdid, and low states, respectively.

Library

A directory that contains a collection of only a particular type of
file. The 9100A/9105A uses four libraries: a part library, a
program library, a pod library, and a help library.

Local Variable
A variable whose name and value are valid only for the
invocation of the block in which the variable is declared.

M ask
A vaue where each logic “1” represents a bit that is to be acted
on.

8-7

8-8

Monitor
A 24-line, 80-column display that connects to the rear pand of
the 9 100A/9 105A.

Node
A st of points that are dl eectricaly interconnected.

Node List _
A file containing a description of the interconnection of dl pins
on a UUT.

Non-Printing Characters
ASCIl codes that do not represent letters, numbers, or
punctuation.

One's Complement

The result of changing every bit of a binary number to its
complement vaue.

Operand
A vaue or expresson that receives the action of an operator.
See Operator.

Operator

1. A symbol that acts on one or more values or expressons to
produce another vaue. 2. A person who uses the 9100A/
9 105A for testing or troubleshooting.

Operator’'s Display
Three-line display on the mainframe of the 9100A/9105A.

Operator’s Interface
The operator’s display and the operator’s keypad.

Operator’s Keypad
The st of keys on the front pand of the manframe of the
9100A/9105A.

Overdriver
A circuit in the probe or an I/O module that forces a voltage level
on the probe or a pin of the 1/O module.

Part Description
A file that describes a component on a UUT.

Part Library
A library of part descriptions.

Pod Library

A library of pod descriptions, each of which contains a pod
database and pod-related TL/1 programs.

Pod Synchronization
Synchronizing a node response measurement using signals
generated by the pod to indicate the sampling time.

Positional Notation

The specification of command arguments without using
keywords.

Priority Pin
A pin that the GFI program will test first if a particular node is
bad.

Probe

A device that can stimulate and measure any single point on the
UUT.

Program Library

A library of programs that can be called by any program in the
userdisk.

Programmer’s Interface
The monitor and the programmer’s keyboard.

Programmer’sKeyboard
The keyboard that connects to the side panel of the 9100A.

Raise
See Fault Condition Raising.

Reference Designator _
A one to ten character string naming a component on the UUT,

8-9

8-10

Related Input Pin _
An input pin on a part that affects «n curput pin on that same
part.

Response File

A file containing data generated by executing a specific stimulus
program to a UUT and measuring the responses for the
execution of the stimulus program.

RUN UUT Test
A feature that alows the norma operation of a UUT using its
own program.

Scope

The definition of a variable as being valid oniy within an
invocation block (local scope) or as being valid both within an
invocation block and outside 1t (global scope).

Selectable Field

An area of the editor’s display, usualy shorter than a single line,
whose contents can be selected from a limited number of choices
(by pressing the Field Select key).

Signature
See CRC Signature.

SIP
An acronym for Single In-line Package. See also DIP.

Softkey
A key that has its function determined by software.

Statement

In a program, a group of words and/or symbols that cause the
9100A/9105A to perform some action.

Stimulus Program

A program that exercises a circuit while responses of circuit
nodes are gathered to see if the circuit produces the expected
response.

String
A group of characters enclosed in double-quote characters (")
and manipulated as a sngle entity.

Subscript
A number that sdlects one dimengon of an aray.

Synchronous
Activated by trangtions of a clock sgnd.

Termination Status
An indication of whether a program or function ended with
“passes’ or “falls’ as a result.

Timeout
A condition in which an expected event has not occurred within
the expected time period.

Toggle
To change to the complementary logic Sate.

Transition Count
A record of the number of times the logic levd a a point changes
to the high gtate within a period of time,

Troubleshooting
A process of locating the area of a UUT that is causng a fault.

Userdisk
1. A diskette containing test programs and information about a

paticular UUT. 2. The current disk drive that is used as a
source for UUT programs and data.

uuT
Unit Under Test. A physicd item, i.e, a board or a system to
be tested.

UUT Directory
A st of files that contain information about a particular UUT.

Wildcard

A symbol that represents any sequence of characters. The
9100A/9105A uses the asterisk character (*) for this purpose.

8-11

Window
An area of the monitor reserved for cetain information to be

displayed.

8-12

Index

ABORT softkey, 6-1 0*
Active edge, 8-1*
Additional GFI features, 5-7
Address
bus stimulus commands, 3-85
decoding, 8-
mapping, 8-l
space selection, 3-78
Alias file
absent part name, 7-8
format examples, 7-1 0
Aliasing, 7-4, 8-l
arm, 3- 08
Arrays, 3-40
ASCIl keyboard, 2-15
Assert, 8-l
Assigning
default values to variables, 3-42
values to variables, 3-41
Assignment statement, 3-50
Asynchronous, 8-
AUTO
NEW LINE, 6-4
WRAP, 6-4
Automated
test, 8-2
troubleshooting, 8-2

Availability of debugger commands, 4- 0

Index-I|

Index-2

Backtracing, 8-2
Backup disk, 2-23
BASIC, 8-2
Bit logical, 8-2
Block, 8-2
commands, 2-39
structure of TL/1, 3-54
BREAK, 4-6
Breakpoints, 4-2, 4-6, 4-13
Bringing up a program screen, 3-2
BRK, 4-2, 4-6
Buffer, 8-2
Buffered
and unbuffered channels, 3-69
channels, 3-69
Built-in test, 3-85, 3-86, 8-2
Bulletin - board
downloading from the bulletin board to the 9100A, 6-26
logging into the bulletin board from the 9100A terminal emulator, 6-25
uploading files to the bulletin board from the 91 OOA, 6-28
Bus, 8-2

CAD, 6-1, 8-2
CAD translator, 7-1
absent part alias file, 7-8
alias file format examples, 7-1 0
configuration file, 7-6
optional file, 7-5
output check list file, 7-9
part alias file, 7-8
pin substitution file, 7-7
source file name, 7-5
system type, 7-5
Cadnetix, 7-22
Calibration delay offset, 3-1 15
Case sensitive, 8-3
Changing LEARN options, 5-68
Changing the current compiler options procedure, 3-22
Changing the offset for the /O module or probe, 3-I 15
Channel, 3-67, 8-3
CHECK command, 2-29, 243,31 1,4-1*, 5-48, 5-54
Check procedure, 3- 1
Checking for errors, 2-29
checkstatus, 3-109
clearpatt, 3-112
clip, 3-104
close. 3-67

G

Command
CHECK, 3- 1
DELETE, 5-65
INSERT, 5-67
LEARN, 5-67
OFFSET, 5-83
Comment, 3-36, 8-3
compare, 3- 11
COMPILE, 241 .
Compiled database, 2-4,521, 5-99

Compiler options for diagnostics, using the, 3-13

Compiling a TL/1 program, 3-19
Compiling procedures, 3-20
Compiling the GFI database for a UUT, 5-99
Component, 8-3
Components, 5-2
Compound conditions, 3-65
Conditional
branching, 8-3
expressions, 3-64
flow of control, 3-64
Configuration file, 7-6
Configuring measurement hardware, 3- 05
connect, 3-1 05
Connecting external sync leads, 3-1 05
CONT (CONTINUE). 4-7
Continuation character, 2-23, 8-3
CONTINUE, 4-7
Control line, 8-3
stimulus commands, 3-86
Control sequence, 6-5, 8-3
Converting
fles downloaded to the 9100A, 6-24

files for uploading from the 91 OOA, 6- 1

from UFI to GFI, 5-1 16
COPY, 221
Count (transition count), 3-96, 5-64, 5-76
count, 3-95
command, 3 11
counter, 3-95
CRC signature, 8-3
Creating a fault condition
exerciser, 3-126
handler, 3-1 19
Creating a summary of GFI coverage, 5-109
CTS/RTS, 6-2, 6-9
Current compiler options procedure, 3-21

Index-3

Index-4

Cursor, 8-3
commands, 2-37
control, 8-4

CUT, 2-39

Data
bus, 8-4
bus stimulus commands, 3-85
comparison with the }/O module, 3- 11
type, 3-38, 8-4
types, variables, and expressions, 3-38
Data-compare-equal (DCE), 3-92, 3-1 11
DEBUG softkey, 4-1*
Debugger, 4-1
commands (softkeys), 4-5
keyboard, 4-4
screen, 4-2
using the debugger, 3-16, 4-10
Debugging
blocks with programs, 4-14
chained programs, 4-16
errors, 4-1 2
functions, 4-15
handlers, 4-1 6
if blocks, 4-14
loop blocks, 4-15
programs, 4-13
Declaration, 3-41, 3-59, 8-4
declare, 3-41
Default value, 3-41, 3-42, 8-4
Definition blocks, 3-7*
delete, 3-72
Deleting files, 2-22, 3-72
Description of the GFI offset window, 5-86
Device, 3-68, 5-2, 8-4
Differences between UFlI and GFIl, 5-114
DIP, 5-24, 8-4
Directory, 2-2, 8-4
Disk
backup, 2-21
pathnames in TL/1 , 3-75
utilities, 2-21
Display windows, 2-9, 2-| 1
Downloading files
from a PC to the 9100A, 6-21
to the 9100A, 6-17
Drivability, 8-4

Dynamic coupling, 8-4

edge, 8-4
command, 3-107
Edit window, 2-19
Editing a
node list, 5-50
part description, 5-40
program, 5-56
reference designator list, 5-44
response file, 5-76
stimulus program, 5-56
stimulus program response file, 5-76
userdisk, 2-32
Editor, 2-I
keypad, 2- 7
end if, 3-65
Endless loop, 3-67
Entering a part description, 5-40
Entering and exiting the
debugger, 4-2
editor, 2-20
terminal emulator, 6-l
Error messages, 5-1 04
Errors, 4-1 2
Escape sequence, 6-6
Example LEARN session, 5-77
Example of
built-in function checking, 3-32
control flow checking, 3-34
return value checking, 3-33
EXEC (EXECUTE), 3-1 6
EXEC softkey, 5-91
execute, 3-59
Executing a TL/1 program, 3-36, 4-5
Execution pointer, 4-4
Exerciser, 3-56, 3-127, 8-5
Expression, 3-52, 8-5
External synchronization, 3-1 01, 3- 06, 85

Index-5

Index-6

fails, 3-1 28
Fault, 3-116, 8-5
command, 3-1 17
condition, 3-116, 8-5
exerciser, 3- 27
handler, 3-56, 3-121, 3-1 24, 4-1 6
names, 3-119
window, 2-1 1, 4-9, 4-| 1
Fault condition
exerciser, 8-5
handler, 3-56, 3- 16, 3-122, 8-5
names, 3-119
raising, 3-1 17, 8-5
Fault conditions and fault handling, 3-1 16
FAULT softkey, 2-38, 4-9, 4-| 1, 596
Features of TL/1, 3-1
Feedback loop, 5-14, 85
Fields, 2-24
File
and device types, 3-68
and directory names, 2-31
commands, 3-68
conversion, 2-22, 6-10
Fill-in field, 2-25, 8-5
Filling a block of memory, 3-81
Flow control, 3-54, 6-1, 6-9
Forcing line, 8-6
Format, 2-22
picture, 8-6
string, 3-69, 8-6
Freerun synchronization, 3-103
Frequency, 3-94, 5-64, 5-76
Function, 3-56, 3-58, 4-15
Functional test, 8-6
Futurenet, 7-21

Gaining control of program execution, 4- 3
General
download procedure, 6-18
upload procedure, 6- 2
Generating a summary of GFl database, 5-109
getoffset, 3-115
getromsig, 3-77, 3-90
getspace, 3-77
Getting started with TL/1 programs, 3l

@

GFl (Guided Fault isolation), 3-135, 5-1, 8-6
additional features, 5-7
algorithm, 5-3
conversion from UFI, 5-1 16
database overview, 5-21
database reference, 5-21
differences from UFI, 5-114
softkey commands, 2-41
statistical summary, 5-1 10
summary, 8-6
user interface, 5-118
writing stimulus programs, 3-1 37, 3-1 39, 5-56

GFI commands (TL/1), 3-133, 3-135
gfi accuse, 3-141
ofi clear, 3- 41
gfi control, 3-138
ofi device, 3-135, 3-136
ofi hint, 3-141
ofi ref, 3-138
ofi status, 3-141
ofi suggest, 3-141
ofi test, 3-141

Global
scope, 3-40, 3-63
variable, 3-42, 8-6
variables, 3-63

Glossary, 8-l

GOTO softkey, 2-36

haltuut, 3-91
handle, 3-58
Handler, 3-56, 3-58, 3-| 16, 3-121, 3-125, 4-16, 8-6
HELP
library, 2-6, 3-130
messages, 3- 30
window, 2-1 1
Hexadecimal, 8-6
How
a fault condition handler is chosen, 3- 21
a TL/1 fault condition handler is invoked, 3-123
GFl uses the database and stimuli, 5-18
programs and functions are invoked, 3-59

110, 3-93, 8-6
I/O module, 3-92, 5-7, 8-7

and probe commands, 3-93
if, 3-64, 4-14

Index-7

Index-8

Implicit declaration, 8-7
index file, 3-130
Information
entry, 2-23
window, 2-9
INIT (INITIALIZE), 4-8
Input, 3-67, 3-68, 3-71
output and file commands, 3-67
using, 3-72
INSERT, 5-67
INSERT MODE, 6-4
Interface to special pod operations, 3-80
Internal synchronization, 3-101
Invocation, 8-7
Invoking GFI from a TL/{ program, 3-140

Keyword, 8-7
notation, 3-32, 3-37, 3-38, 3-62, 8-7
Kinds of measurements that can be made, 3-98

Label, 8-7
Leapfrogging, 5-1 2
LEARN, 2-42, 5-70, 5-78
Level, 3-95

history, 3-99, 5-74, 8-7
Library, 2-2, 8-7
Line check, 2-29
LINE TERMINATOR, 6-4
Local scope, 3-40, 3-63
Local variable, 3-41, 3-63, 8-7
Locations of TL/1 programs, 3-2
Logical string operators, 3-51
Loop

blocks, 3-66, 4-15

until, 3-66

while, 3-66
LOOP softkey 5-96

Making measurements with the probe and 1/O module, 3-103
Marginal response, 5-72

MARK, 2-39

Mask, 8-7

Math functions, 3-53

O

Measurements
frequencies, 3-94, 5-64
level histories, 3-99, 5-74
signatures, 3-94
transition counts, 3-98, 5-64, 5-76
Merging responses, 5-74
Messages window, 2-1 1
Monitor, 2-8, 2-9, 8-8
MORE, 5-65

Name of configuration save file, 7-9
Naming
91 00A/9105A devices, 3-97
bus-master (*master) pins, 5-48
UUT components and pins, 3-93
Newline character, 3-70
NEXT, 4-8
Node, 5-17, 8-8
Node list, 2-4, 5-17, 5-46, 5-50, 8-8
Non-printing characters, 3-39, 8-8
Numeric values, 3-39

Offset, 3-115
One’s complement, 8-8
open

command, 3-67, 3-68, 3-73, 3-75
function, 3-76
Opening devices and files, 3-68

Operand, 8-8
Operator’s

display, 8-8

interface, 3-68, 8-8

keypad, 8-8
Operators, 3-51, 88
Optional files, 7-5
Output, 3-67

check list file, 7-9
Overdriver, 8-8
Overview, [-1

of the CAD translator, 7-2

of T/, 3

Part
alias file, 7-8
description, 2-6, 5-17, 5-24, 8-9
library, 2-6, 5-22, 8-9

Pass and fail status, 3-1 28

Index-9

passes, 3-132

Passing arguments, 3-51, 3-61

PASTE, 2-41

Pathname, 3-4, 3-75

Pattern driving with the (/O module, 3- 12
Performing a measurement, 3- 07
persistent variable, 3-42

Physical environment, 2-7

Pin

coverage matrix, 5-113
substitution file, 7-7
Placing
a pod in RUN UUT mode, 3-91
the probe, 3-105
Pod
description, 2-5
library, 2-5, 3-2, 8-9
related commands, 3-76
setup commands, 3-78
synchronization, 3-80, 3-106, 8-9
podsetup, 3-37, 3-78
poll, 3-72
polluut, 3-91
Positional notation, 3-37, 8-9
print, 3-67, 3-71

using, 3-70
Printing
files, 2-22

newlines on output channels, 3-70
Priority pin, 5 2, 5-65, 8-9
Probe, 3-93, 8-9
stimulus, 3-1 14
Probing inputs before outputs, 5-8
Program
library, 2-5,3-2, 8-9
statement, 3-55, 3-57
Programmer’s
interface, 3-68, 8-9
keyboard, 2-7, 8-9
Programs
checking syntax, 2-43, 3-11
debugging, 31 6, 4-1, 41 0
locations of, 2-2, 3-2
stimulus programs, 2-5, 3-137, 5-52
structure of TL/1 programs, 3-7, 3-54
writing programs, 3-9
Writing stimulus programs, 3-1 35, 3 37, 5-56

Index-l 0

Prompts and defaults, 2-27
pulser, 3-1 14

Raise, 8-9
Raising fault condition, 3-116
rampaddr, 3-84
rampdata, 3-85
read, 3-83
readblock, 3-82
Reading and writing
a single location, 3-81
microprocessor interface signals, 3-83
UUT memory and I/O, 3-81
Reading data for each component pin, 3- 11
readout, 3-1 08
readspecial, 3-80
readstatus, 3-83
RECEIVE, 6-9
Reference alias file, 7-9
Reference designator, 2-4, 3-93, 89
list, 2-4, 5-42
Related
input pin, 8-10
inputs, 5-10, 5-27
REMOVE, 2-22
Removing a pod from RUN UUT mode, 3-92
REPLACE, 2-37
Required inputs, 7-5
Response file, 2-4, 5-60, 5-76, 8-10
Responses, 2-4, 560, 5-70, 572, 574
RESTORE, 6-9
return, 3-62
Returning values from programs and functions, 3-62
rotate, 3-85
RUN UUT, 3-91
mode, 3-91
test, 8-10

SAVE, 2-22, 6-9
Saving and restoring UUT memory data, 3-82
Scicards, 7-22
Scope, 81 0
of a function, 3-61
of a program, 3-60
rules for programs and functions, 3-60
rules for variables, 3-40, 3-63
SEARCH, 2-37, 4-8

Index-1 1

Search and replace, 7-1 0
SELECT, 2-42, 5-76
Selectable field, 2-25, 8-10
Selecting and placing an /O module, 3-1 04
Selecting the desired offset, 5-94
SEND, 6-9
Serial port, 3-69, 6-1
SET (SET VARIABLE), 4-8
setoffset, 3-1 15
Setspace, 3-77
Setting
breakpoints, 4-1 0
pod error reporting and sync mode, 3-80
Setting the offset in a stimulus program 5-97
SHOW, 4-8
sig, 3-108
Signature, 3-99, 5-74, 8-10
Simple
if statements, 3-65
variable, 3-42
SIP, 5-24, 8-10
Softkey, 8-10
labels, 2-13
Softkeys
debugger commands, 4-5
function keys, 2-19
GFI commands, 2-42
terminal emulator commands, 6-9
Source file name, 7-5
Stable response, 5-70
Standard LEARN cycle timing, 5-70
Star master, 5-48
STARTUP UUT, 2-33
Statement, 8 0
Statistical summary, 5-1 10
Status line, 2-13
STEP, 4-7
Stimulus
commands for signature analysis, 3-84
program response file, 2-4, 556,560, 5-76
program, 2-4, 3-136, 3-139, 5-16, 5-17, 5-52, 8-10
Stimulus programs called from GFI, 3-136
stopcount, 3-107
storepatt, 3-112
String constants, 3-39
String, 8- 1
Structure of a TL/1 program, 3-7,3-54

Index-l 2

Subscript, 3-40, 8- 1
Suggestions for using CAD translator, 7-19
sync, 3-94, 3-98
Synchronization modes, 3-100
external, 3-1 01
freerun, 3-103
internal, 3-1 01
pod, 3-100, 3-106
Synchronous, 8-11
Syntax, 3-37
Sysaddr, 3-54
Sysdata, 3-54
Sysspace, 3-79
System functions, 3-53
System type, 7-5
Systime, 3-53

Tab setting, 6-5
TERM, 2-43, 6-2
Terminal emulation commands, 2-43
Terminal emulator, 6-1
commands (softkey definitions), 6-9
display, 6-2
downloading files to the 91 OOA, 6-1 0
input, 6-8
output, 6-5
Termination status, 3-128, 8- 1
testbus, 3-87
Testing
RAM memory, 3-87
ROM memory, 3-90
the microprocessor buses, 3-87
testramfast, 3-87
testramfull, 3-87
Text
entry, 2-23
files, 2-2, 2-4
TEXT CURSOR, 6-4
threshold, 3-105
Timeout, 8-1 1
TLN
language, 3-1
syntax, 3-37
toggle, 8-11
addr, 3-84, 3-86
control, 3-86, 3-88
data, 3-84, 3-85

Index-l 3

Transferring

a CAD output file, 7-4

files to and from the 9100A, 6-10
Transition count, 3-1 00, 5-64, 5-76, 8- 1
Troubleshooting, 8-11

UFI (Unguided Fault Isolation), 5-113
conveting to GFI, 5-116
differences from GFI, 5-1 14
user interface, 5-114

Unbuffered channels, 3-70

Unguided fault isolation, 5-1 13

Unhandled fault conditions, 3-124

Unstable response, 5-70

Uploading from the 91 OOA to a PC, 6-17

Userdisk, 2-1, 8-11
organization, 2-2
text files, 2-2

Using
CHECK, 3- 1
external synchronization, 3- 06
GFI database with TL/1 functions, 5-116
pod synchronization, 3-106
the CAD translator, 7-4
the debugger, 3-16, 4-10

UuT, 8-11
address space selection, 3-78
directory, 2-4, 3-2, 8-11
text files, 2-4

Variable declarations, 3-41
Variables, 3-39

WAIT FOR TERMINATOR, 6-4
waituut, 3-91
Warning messages, 5- 07
Wildcard, 2-37, 4-9, 8-11
Window, 8- 2

commands, 2-38
Windows, 2-9, 2-11, 3-72
write, 3-77
writeblock, 3-77
writecontrol, 3-77
Write-protection, 2-23, 2-33
writefill, 3-54, 3-81
writepatt, 3- 11
writespecial, 3-80

Index-14

. Writing
‘, : \?, a Tw1 program, 3-9
% stimulus programs, 3-137, 3-139, 5-56
XON/XOFF, 6-2, 6-9
YANK, 2-41

index-l 5

Index-16

