9100 Series

TL/1 Reference
Manual

99999999

APRIL 1051 FLUKE.
©1991 John Fluke Mfg. Co., Inc.

All rights reserved. Litho in U.S.A.

CUSTOMER NOTICE

THROUGHOUT THIS MANUAL, ALL INSTANCES OF 9100A
AND 9105A ALSO APPLY TO THE 9100FT AND 9105FT.

Contents

Section Title Page
Where AM L.t e e e eees xi

T, OVeIVIOW. ... et e 1-1
1.1, INTRODUCTIONcooiiiiiriiitiiriiiiieeee e arereeereeeeeennens 11
1.2. ORGANIZATION OF THISMANUAL ..., 1-2

2. TL/1 Language ConventionS...............ccccovvviiiiiininnnnnnn. 2-1
2.1. NAME CONVENTIONSoovviiiiiiiiiieeeeeeeereeeeerrrecieene 2-2
2.11 File and Directory Names.......c.cccccceeeeeririvincccreeenn. 2-3
2.1.2 Program NaAmMES......ccciiviievriiineeiririeeerncvrreeeneens 2-4
2.1.3. Device NamMeScouueiiiiieeiii e e 24
2.1.4, DeVice LiSt....ccoiveiiieriiiiieei e 2-6
215 Reference Designator Namesccccvvvvvvvvnennenn. 2-7
2.1.6 Ref PINNaMeScocvvveiiiiiiiiie e 2-7
2.2. DATA TYPES ... e s e e e e 2-8
2.2.1 NUMEKIC ...t e e 2-8
2.2.2 Floating-Pointc.cooiiiiiiiiiiiiee e 29
2.2.3 StNG .o e 2-10
2.3. ARBAYS e 2-11
2.4, OPERATORS.. ... oottt e 2-11
2.4.1. Arithmetic Operators............cccueevveeeememnieeniveenireeennnns 2-12
2.4.2. Relational Operators...........coceeveeeiiiiee s 2-12
2.4.3. Logical Operators.........ccuuueeevreririviiireeeirienieerereenenens 2-13
2.4.4. String Operators.......c..eeuueveivveeiieriiirieeeereresreeeeeens 2-14
2.45. String FUNCiONS.....covvvniiiiiiceiee e 2-14
2.4.6. Bit Shifting Operatorscceeveeievememiivoienineeeeeenn 2-15
2.4.7. Bit Mask Operatorsccooccmermeeieirimniene e 2-15

Section Title Page

2.5. ORDER OF EVALUATION OF OPERATORS. 2-16
2.6. CONDITIONAL EXPRESSIONS........cccoriiiiere 217
2.7. FUNCTIONSo e e e 2-20
2.7.1. Special FUNCIONS......ccvuviiiiiiiiiieee e e 2-20
2.7.2. Pod FUNCHIONS e 2-20
2.7.3. I/O Module and Probe Functions..........c.ccooeeevennnnene. 2-20
2.7.4. Type Conversion FUNCLIONScooovmiicieninneeenn. 2-21
2.8. TL/1 STATEMENT CONVENTIONS ... 2-22
3. TL/1 Alphabetical Reference...........c..ccoooiiiiiiiiniiinnninnnn, 3-1

TL/1 Commands are listed alphabetically

Appendices
A. ASCI COUES......coeeiiieiiiii i ceee s eee e aeans A-1
B. Control Codes for Monltor and Operator's Display....... B-1
B.1 ERASINGcoiiiieririiecreiireititi e ee e et e B-1
B.2 CURSOR CONTROL SEQUENCES..........ccccoceeennne B-2
B.3 DISPLAY ATTRIBUTES......cccceii et e B-2
B.4 DISPLAY MODE SEQUENCEScocoeeiiiiiiiiriiniennnae. B-2
B.5 TAB STOPS ...ttt e B-3
B.6 EDITING CONTROLoooriiiriieeeiete et B-3
B.7 ANNUNCIATOR CONTROL.....cooeiiiiiiieiiiiiee e B-3
B.8 BEEPER CONTROLooiiiiiiiiiiieee e B-4
B.9 SPECIAL DISPLAY CODES FOR THE
OPERATOR'S DISPLAY ...coooiiiiiiiiiceierreene e B-4
B.10. DISPLAY CHARACTERS FOR THE MONITOR............. B-5
C. Operator's Keypad Mapping to TL/1 Input..................... C-1
D. Programmer's Keyboard Mapping to TL/1 Input............ D-1

Section ‘ Title Page

E.

I/0 Module CIlip/Pin Mapping..........cccveeiiiiiieiiiicreeeee E-1
TL/1 Reserved WOrdScocoocvvieerviriveeiiiiiiiieneeee e F-1
Handling Built-ln Fault Conditions...............cccceooiiiiee G-1
GA1. OVERVIEW.ottt G-1
G.2 ARGUMENT NAMES..........cooovriiree e G-2
G.3. RAM TEST FAULT CONDITIONS.......cccociieiiiiiiiiiieee G4
G4. ROM TEST FAULT CONDITIONS..........ccccoviiieciniieeene G-7
G.5. BUS TEST FAULT CONDITIONScoooeiiiriiiieiiiinee, GS8
G.6. MEMORY INTERFACE POD FAULT CONDITIONS........ G-9
G.7. GENERIC FAULT CONDITIONS.........ccooviriieiienen G-10
G.8. PRIMITIVE FAULT CONDITIONS.......cccovevvveee e G-10
G.9. I/O FAULT CONDITIONS ..o e G-11
G.10. ARGUMENTS USED WITH

BUILT-IN TESTS ...coiiiiiiitinirinee e er et G-12
Generating Bullt-In Fault Messagesccccccceeeennine H-1
H.1 OVERVIEW. ... e eveai s H-1
H.1.1 SYmMbBOIS ... e H-2
H.1.2. Message Variablescccccoeeveiiiiiiiiieciieeeeee e, H-3
H.1.3 Argument Namescoooiiiiiiivi e e H-3
H.2 HOW TO READ THE FAULT MESSAGE TABLES......... H-5
H.3 FAULT MESSAGE TABLES...........cccviveieiieieeeieeeeee, H-6
Pod-Related Information.................ccccooeeiiierniiiiinniniieinnn 1-1
1.1. POD CALIBRATION AND OFFSETS.......ccocvvecivieeeeennn. 11
2. POD INFORMATION FOR 9100A/9105A USERS........ I-2
1.3. SUMMARY OF 80186 POD SUPPLEMENTAL

INFORMATIONooiiiiiiiiiiiiiiiiier e e e e e -4
9100A/9105A ERROR NUMBERS.............oooiiiiivrivenninnne. J-1
J.1, INTRODUCTION ...t ereeeceeeene J-1
J.2. ERROR NUMBERS...........oirieeeeercirnreree e J-1

Section Title Page

K. 9100 Series Software Error Report Form....................... K-1

Index

vi

Figures

Figure

Title Page
T/ Metasyntax Notationccoouvieeeiiiiii et 3-3
TL/1 Syntax Notation...........ooooee i 3-5
Calibration and Offset Example Waveformsc...cceeeeveeens -3
Error NUMDEIS.....c.uveiii ettt e J-2

vii

Getting
Started

Automated
Operations
Manual

Technical
User's
Manual

Applications
Manual

Programmer's
Manual

TL/1
Reference
Manual

Where Am I?

A description of the parts of the
9100A/9105A, what they do, how to
connect them, and how to power up.

How to run pre-programmed
test or troubleshooting
procedures.

How to use the 9100A/9105A
keypad to test and troubleshoot your
Unit Under Test (UUT).

How to design test or troubleshooting
procedures for your Unit Under Test
(UUT).

How to use the programming station
with the 9100A to create automated test
or troubleshooting procedures.

A description of all TL/1 commands
arranged in alphabetical order for
quick reference.

Section 1
Overview

INTRODUCTION 1.1.

The TL/1 Reference Manual is one of a set of manuals that helps
you to program your 9100A/9105A productively using the TL/1
programming language. You will find answers to questions
about specific TL/1 statements and functions most quickly in this
manual since the reference section is organized in alphabetical
order.

However, if you are learning TL/1, or if you require more
general information about programming concepts, you will
probably want to first refer to the "Overview of TL/1" section of
the Programmer’s Manual.

1.1

ORGANIZATION OF THIS MANUAL 1.2.

The remaining sections of this manual are organized in the
following order:

2.

TL/1 Language Conventions -

Name Conventions: How to assign names that
denote variables, programs, files, directories, and
devices.

Data Types: Syntax, rules, and restrictions which
affect numeric, floating point, and string variables.

Arrays: Syntax, rules, and restrictions which apply
to tables and arrays of numeric and string variables.

Operators: A listing and description of symbols that
create a new value from one or more existing values
(operands).

Order of Evaluation: A description of how the
precedence of operators determines the order in
which the operators' actions are performed.

Conditional Expressions: How to construct condi-
tional expressions, which control execution of block
statements.

TL/1 Statement Conventions: General conventions
for TL/1 statements. This section describes the
differences between simple statements and block
statements.

Functions: General conventions for TL/1 built-in
functions.

TL/1 Alphabetical Reference - Each TL/1 function
and statement in alphabetical order, provided with a
summary of the command, programming examples,
and references to additional explanations in the
Programmer’s Manual.

The Appendices, which follow the previous sections, contain the
following information:

A.

ASCII Codes - A table which provides ASCII
character codes in hexadecimal and decimal notation,
and their respective character representations.

Control Codes for Monitor and Operator's Display -
Character codes which perform cursor movement
and set video attributes on the monitor and the
operator's display.

Operator's Keypad Mapping to TL/1 Input - Cross-
listing of operator's keypad keys and the character
codes which represent them.

Programmer's Keyboard Mapping to TL/1 Input -
Cross-listing of non-standard programmer's
keyboard keys and the non-standard character codes
which represent them.

/0 Module Clip/Pin Mapping - Tables which
indicate the correspondence between these sets of
pins.

TL/1 Reserved Words - Alphabetized listing of TL/1
reserved words.

Handling Built-in Fault Messages in TL/1
Programs - Listings of built-in fault conditions and
their corresponding arguments.

Raising Built-in Fault Messages in TL/1 Programs -
Tables which show the relationship of fault messages
to the arguments provided to fault condition
handlers.

Pod-Related Information - Provides a summary of
the pod-specific information available in the
Supplemental Pod Information for 9100A/9105A
User's Manual.

9100A/9105A Error Codes - Provides a listing of
possible errors the 9100A/9105A can encounter
during operation.

9100 Series Software Error Report Form.

Section 2
TL/1 Language
Conventions

A number of conventions apply to TL/1 language statements.
Variable and program names must follow a particular format,
operators are evaluated in a specific order, data types and arrays
are subject to certain restrictions, and all TL/1 statements must
be entered in a consistent manner.

This section describes the following conventions:

Name Conventions.

Data Types.

Arrays.

Operators.

Order of Evaluation of Operators.
Conditional Expressions.
Functions.

TL/1 Statement Conventions.

2-1

NAME CONVENTIONS

2-2

TL/1 rules require that you provide a name for each program,
variable, file, and directory that you create. The TL/1 keywords
which appear in the "TL/1 Alphabetical Reference" section of
this manual follow the same convention.

This section describes the name conventions used in TL/1.

In TL/1, valid names meet the following requirements:

. A name must begin with a letter (A-Z, a-z,) or the character

ll@“, or "—l'.

b A name can contain letters, numbers, and the characters
ll@" ll$ll’ and "_"‘

b A name must be distinguishable from reserved names
(keywords).

. A name must have 255 or fewer characters. However,

shorter name lengths are suggested as the debugger cannot
process long variable names.

Names are case-sensitive; the names WXYZ, Wxyz, and wxyz
denote different entities.

If a name is enclosed in single quote characters ('), it can be
spelled the same as a keyword; the single quotes distinguish the
name from the keyword. Single-quoted names can also contain
spaces or punctuation marks. For example, the following
variable names are valid:

‘name containing spaces’
‘name-containing-dashes’

'to’ (a name spelled like a keyword)
'test. 101"

The single quotes are not part of the name (for example, foo and
‘foo' are the same).

21. @

File and Directory Names 2.1.1,

Every file and directory has a name. A file or directory name
must meet the following requirements:

o A name can have no more than 10 characters.

b A name consists only of letters, numbers, underscore

characters "_", and periods ".".

®* A name must begin with either a letter or a number.

File and directory names are not case-sensitive; "TEST1" is the
same name as "testl". Two files or directories can have the
same name if they have different types. For example, a program
named TEST]1 is distinct from a text document named TEST]1.
Two files of the same type can have the same name if they are in
different directories. The program DEMO in the program library
does not conflict with the program DEMO in a UUT directory.
The names PARTLIB, PROGLIB, HELPLIB, and PODLIB can
only be given to a part library, program library, help library, and
pod library, respectively. You cannot name a program
PODLIB, for example.

The names of directories that are limited to one per user disk or
files that are limited to one per UUT directory are predetermined.
These items and their names are:

Items limited to one per user disk
File and directory names appear in TL/1 as

strings of characters surrounded by double-
quote (") characters.

Directory Name Type

user disk (hard drive) HDR USERDISK
user disk (floppy drive 1) DR1 USERDISK
user disk (floppy drive 2)* DR2 USERDISK
part library PARTLIB LIBRARY
program library PROGLIB LIBRARY
pod library PODLIB LIBRARY
help library HELPLIB LIBRARY

2-3

Items limited to one per UUT directory

File Name Type
reference designator list REFLIST REF
node list NODELIST NODE

* On the 9105A only.

Program Names 2.1.2.

Because program names must match the name of the file that
stores the program, they are subject to the following additional
requirements:

d A program name contains from 1 to 10 characters.

® A program name consists of only letters, numbers,
underscore characters (_), and periods (.). If a period is
used, the program name must be enclosed in single quotes.

® A program name cannot be the same as the name of a built-
in function.

¢ TL/1 requires that the program name be capitalized exactly
the same in the program statement that defines the program
and in every execute statement that invokes the program.
The capitalization of letters is ignored when a program is
looked up on the disk. Thus, it is not possible to define
two program names that differ only in case (such as
PROGT1 and progl).

d User programs must not use the names of Fluke-provided
programs in the PODLIB.

Device Names 2.1.3.

2-4

TL/1 is a language designed for testing and troubleshooting.
For this reason, it has built into it a convenient method for
referring to the probe, to an I/O module, to a clip module (which
fits into an I/O module), or to a component on a UUT (to which
a clip module is attached).

When TL/1 refers to a pod, it uses the following name:
"/pod”

When TL/1 refers to the probe, it uses the following name:
"/probe”

The 9100A/9105A can have up to four I/O modules connected to
it. The following are the valid I/O module names:

Name Description

"/mod1" I/O module 1
"/mod2" I/O module 2
"/mod3" I/O module 3
"/mod4" I/O module 4

Each I/O module can have up to two clip modules connected to
it. The clips are referred to as "A" or "B" depending on the side
of the I/O module that they are connected to. The following are
valid clip module names:

Name Description

"/modl1A™ Clip module A of I/O module 1
"/mod1B" Clip module B of I/O module 1
"/mod2A™ Clip module A of I/O module 2
"/mod2B" Clip module B of I/O module 2
"/mod3A™ Clip module A of I/O module 3
"/mod3B" Clip module B of I/O module 3
"/mod4A™ Clip module A of I/O module 4
"/mod4B" Clip module B of I/O module 4

2-5

The 9100A/9105A can have an IEEE-488 interface installed to
be used as either a talker/listener or as a controller. The IEEE-
488 interface is opened in one of two ways:

"fieee" for the IEEE-488 interface

"fieeefaddress list" for one or more devices attached
to the IEEE-488 interface
(controller only)

An address list is a list of comma-separated IEEE-488
addresses. Each address is either a single radix 10 number,
indicating the device address or a pair of numbers separated by a
colon character, indicating the primary and secondary address of
the device. For example:

"fieee/1" for the device at address 1

"fieee/2,4:10" for the group consisting of the
device at address 2 and the device
with primary address 4 and

secondary address 10

The reference designator is another type of device name that is
often used with TL/1 commands. This reference designator is a
one to six character string that names a component on the UUT.
Some typical examples are shown below:

U22 ul7 SW3 R44 J5 JIA

Device List 2.1.4.

2-6

Many of the probe and I/O module commands allow a list of
devices to be specified. The device list has device names
separated by commas (no spaces are allowed). The following
are valid device lists:

"/mod1,/mod2,/mod3"
"fprobe,/mod1A,/mod2"

Reference Designator Names 2.1.5.

A reference designator is another type of device name that is
often used with TL/1 commands. Reference designator names
must meet the following requirements:

. A name consists only of letters, numbers, underscore
characters "_" "

_", and periods ".".
. A name must begin with either a letter or a number.
d A name can have no more than six characters.
hd Names are not case sensitive.

Some typical examples of reference designator names are shown
below:

U22 ul7 SW3 connl 12a J5

Ref Pin Names 2.1.6.

A reference designator pin name (ref pin name) identifies a
unique pin on the UUT. The name combines a reference
designator name and a pin name, forming a name that is unique
to a single pin on the UUT.

Ref pin names are composed of three parts: a reference
designator name followed by a dash, followed by a pin name or
pin number. The first part of the ref pin name (the reference
designator name) must meet the requirements described in
paragraph 2.1.4. above. The last portion of the ref pin name
(the pin name or pin number) must meet the following
requirements:

® Pin numbers can range from 1 to 255.

. Pin names consist only of letters, numbers, underscore

characters "_", and periods ".".

. Pin names must begin with either a letter or a number.
d Pin names can have no more than eight characters.

° Pin names are not case sensitive.

2-7

Some typical examples of ref pin names are shown below:

U22-3
ul7-40
connl-b4

DATA TYPES 2.2.

A TL/1 variable can represent one of three data types: numeric,
floating-point, or string. TL/1 also allows declaration of arrays
of any of these data types. However, arrays aren't considered a
separate data type.

Numeric 2.2.1.

The numeric type is the set of integers from +4,294,967,295 to
0. There are no negative numbers in TL/1. Each integer can
represent a binary 32-bit data word as well as a numeric
quantity. If a numeric constant is preceded by a "$" character,
the digits are interpreted as hexadecimal (base 16) digits, and the
allowed digits are 0-9 and A-F. Numeric values not preceded by
a "$" character are interpreted as decimal, and the allowed digits
are 0-9.

The following numeric values represent the number seventeen or
the binary data word 10001 (left-most bit is most significant):

17 (decimal)
$11 (hexadecimal)

The following numeric values represent the number two hundred
and fifty-five or the binary data word 11111111:

255 (decimal)
$FF (hexadecimal)

When you represent numbers in hex, you must use only the
digits 0-9 and the capital letters A-F. For example, $ABC
represents a hexadecimal number, but AbC represents a variable
name.

‘ Floating-Point 2.2.2.

The floating-point type uses the IEEE standard for double-
precision floating-point numbers. The full range of numbers is
supported; however, representations of the non-numeric entities
Infinity and NaN (not a number) are not implemented.

Floating constants can be represented in either fixed-point or
scientific format. The following are examples of valid floating-
point constants:
Fixed-point format:
1.2
0.1
-3.09
200.
Scientific format:
0.1E-03
®
10.e+02
-99.9¢23

Note that minus signs are allowed for floating-point constants.
They are also allowed in front of any floating-point expression.

2-9

String 2.2.3. '

A string is a list of zero to 255 characters enclosed in double-
quote characters ("). All ASCII character codes are allowed.
Non-printing characters are represented by a backslash character
(V) followed by a two-digit hexadecimal number. A backslash
followed by a double-quote character (\") represents the double-
quote character. A backslash followed by a backslash (\\)
represents the backslash character. Including a backslash
sequence in a string will allow the printing of the following

characters:

\HH prints: character represented by HH
(where H represents any valid
hex-code digit.)

\" prints: "

N\ prints: \

\nl prints: new-line (a carriage return)

The following examples illustrate various strings and their

interpretations:
String Interpretation
" the empty string
"hello world" hello world
"\"hello world\"" "hello world"
"NOO\D9 hello" <TAB><TAB> hello

A string is manipulated as one entity. The area allocated to a
string variable changes with its value; a string variable does not
need to have dimensions as does an array.

' ARRAYS 2.3.

An array contains either numeric, floating-point, or string values
associated with one variable name. Each element (value) stored
in an array is identified uniquely by its subscript (number) or
sequence of subscripts. For example,

X[3,5,1]

identifies a unique element in the array named X associated with
the subscript sequence 3 - 5 - 1.

An array may have one or more subscripts represented by
numeric expressions. For example,

a[l1]
v[1+2]
tablel[i,j]

are valid names of array elements.

Arrays must be declared before being used so that a sufficiently
large storage area will be reserved for array values; no implicit
declaration is possible. Using a subscript outside the
dimensions specified in the array declaration results in an error.

OPERATORS 2.4.

An operator is a symbol that creates a new value from one or
more existing values (operands). Operand values may be the
results of expressions, constants, or values of invocations.
Each operator is marked with the word operator in the upper
right corner of its description in Section 3.

Some operators have two forms; a symbol consisting of
punctuation characters, and a short name. The two forms denote
the same operator and may be used interchangeably.

The following sections summarize TL/1 operators.

Arithmetic Operators 2.4.1.

Arithmetic operators take numeric or floating-point operands and
produce a result of the same type. Both operands must be of
the same type.

Operator Description Comments

+ Produces an integer or
floating-point sum.

- Produces an integer or
floating-point difference.

* Produces an integer or
floating-point product.

/ Produces an integer Examples: 9/2 produces
or floating-point a quotient of 4.
quotient.

3.0/2.0 produces a
quotient of 1.5.

% Produces an integer Example: 9%?2 produces
remainder, aremainder of 1.

- Multiplies the operand
by -1.0 (floating-point
only).

Relational Operators 2.4.2.

Relational operators are used in conditional statements to
compare magnitudes of quantities. These operators take two
operands of the same type (two integer numbers, two floating-
point numbers, or two strings) and produce a logical numeric
result. If the condition is true, the result is a numeric 1, and if
the condition is false, the result is a numeric 0.

Operator Description Comments

' = Equal to.

<> Not equal to.
< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal
to.
not Negation of a Example: x =noty

logical expression.

Logical Operators 2.4.3.

' Logical operators take numeric operands and produce numeric
results or take string operands representing binary numbers and
produce string results, which also represent binary numbers.

The operands cannot be floating-point numbers.

Operator Description Comments
& Logical AND. Example: 7 & 3 produces 3.
and

. Logical OR. Example: 4 | 3 produces 7.
or
A Logical exclusive Example: 7 A2 produces 3.
Xor OR.
~ One's complement. Each 1 in the operand is
cpl changed to a 0, and each O is

changedtoal

2-13

String Operators | 2.4.4.

String operators are used to analyze or modify string operands.

Operator Description Comments

+ Appends a string For example, a + b is a string
expression to the where string b is appended
end of another string to the end of string a.
expression.

len Counts the number See the len operator in the
of characters in a "TL/1 Alphabetical Reference"
string operand. section of this manual.

String Functions 2.4.5.

String functions are used to analyze or extract substrings of
string arguments.

Function Description Comments

mid Copies a string of See the mid command in the
specified lengthand "TL/1 Alphabetical Reference"
position from the section of this manual.

string operand.

instr Returns the position See the instr command in the
at which a sub-string "TL/1 Alphabetical Reference"
is found in a string. section of this manual.

isval Determines if a string See the isval command in the
is a suitable argument "TL/1 Alphabetical Reference"
to val. section of this manual.

isflt Determines if a string See the isflt command in the
is a suitable argument "TL/1 Alphabetical Reference"
to fval. section of this manual.

2-14

token Extracts a token from Used for scanning fields in

a string.

Bit Shifting Operators

strings. See the token com-
mand in the "TL/1 Alphabeti-
cal Reference" section of this
manual.

2.4.6.

The following operators shift the bits of a numeric operand
either to the right or to the left. The bit locations vacated by

shifted bits are filled with zeros.

Operator Description

<< Shifts the operand

shi left by one or more
bits.

>> Shifts the operand

shr right by one or
more bits.

Bit Mask Operators

Comments

See the shl command in the
"TL/1 Alphabetical Reference"
section of this manual.

See the shr command in the
"TL/1 Alphabetical Reference"
section of this manual.

2.4.7.

These operators calculate a numeric value based on setting bits in
a bit mask or they provide information about bit mask operands.

~ Operator Description

bitmask Calculates a number
by setting all bits
from bit O through
the specified bit.

setbit Calculates a number

by setting a specified

bit.

Comments

See the bitmask command in
the "TL/1 Alphabetical
Reference" section of this
manual.

See the serbit command in the

"TL/1 Alphabetical Reference"
section of this manual.

2-15

Isb

Returns the position See the /sb command in the

of the least- "TL/1 Alphabetical Reference”
significant set bitin section of this manual.

the operand.

msb Returns the position See the msb command in the
of the most- "TL/1 Alphabetical Reference"
significant set bitin section of this manual.
the operand.
ORDER OF EVALUATION OF OPERATORS 2.5.

The precedence of operators determines the order in which the
operators' actions are performed. Operators with higher
precedence are considered before operators with lower
precedence. From highest to lowest, the precedence of
operators in TL/1 is:

1.

7.

2
3
4.
5
6

cpl, setbit, msb, Isb, bitmask, len, not, - (floating-
point only)

*, /, %

+, -

shl, shr

=, <>, <, >, <=, D=

and

or, Xor

According to this order, the expression

a+b*msbc

is equivalent to

2-16

(a + (b * (msb ¢))).

The value of "msb c¢" is evaluated first. Then the result is
multiplied by the value of b and this result is added to the value
of a.

Parentheses modify the order in which expressions are
evaluated, overriding the order of precedence. For example, in
the expression

(a+b)*(c-d)

"a + b" and "c - d" are evaluated before the multiplication is
performed.

If, after parentheses and the order of precedence are considered
in the evaluation of expressions, several expressions of the same
precedence exist, they are evaluated left-to-right. For example,
in the expression:

a+b*c-d

"b * ¢" is evaluated first. The result is added to the value of a,
then the value of d is subtracted from that sum.

CONDITIONAL EXPRESSIONS 2.6.

The if statement, if block, loop block, and for block execute
statements under control of a condition. This condition is a
logical expression that evaluates to either true (non-zero) or false
(zero). The examples below show that the conditional
expression can compare numeric expressions, floating-point, or
string expressions.

'Example 1:

if a = $2E then print "SUCCESS!"

Example 2:
if ans = "yes" then
! Any statements here are executed
! only if the string variable is
! equal to yes
end if

Example 3:

if b < 3.52 then
. ! Any statements here are executed
. ! only if the floating-point
. ! variable is less than 3.52

end if

Example 4:

if £ < > 0.0 then

! Any statements here are executed
! only if the floating-point

! variable is not equal to the

! floating-point value 0.0

end if

You can use both logical operators and relational operators in a
single conditional expression as shown below. However, you
should be careful to check the order of evaluation of such an
expression to be sure that you have written it to do what you
want.

Example 5:
! loop until either x = $2FE3 or

' until y = 100
loop until x = $2FE3 or y = 100

end loop
Example 6:

! this doesn't AND b with ¢
if a < b and ¢ < d then

You should be careful to use the result of a logical comparison to
set flag variables as shown in the following example.

flagl = (a < b) ! The flag bit is located in
flag2 = (c < Q) ! bit 0 of both operands
if flagl and flag2 then x = 1 ‘

2-18

If different bits are used for flag values, incorrect results can
occur when doing logical operations. The example below
shows what you should not do.

|
[uny

Bit 0 is affected.

if a < b then flagl = !
1 Bit 1 is affected.
]
]
]

if ¢ < d then flag2

1
N

Bit 0 of flagl is
not ANDed with
! bit 1 of flag2.
if flagl and flag2 then x =1

Two of the most important operators used with TL/1 are the
passes condition and the fails operators. Each of these is
described in detail in the "TL/1 Alphabetical Reference" section
of this manual. The passes and fails operators test whether a test
function has completed without reporting any faults. An
example of each condition is shown below.

Example 1:

if testbus fails then Test the termination

t
y =0 ! status after using
else ! the testbus command,
y =1 ! and set flag y to
end if ! zero if the test
! fails and to one if
! the test passes.
Example 2:

if testbus passes then

print "Wonderful"
else

print "It's troubleshooting time"
end if

FUNCTIONS 2.7.

TL/1 provides over 130 built in functions to perform basic
operations on numbers and strings, to communicate with
displays, keyboards, and ports. Basic operations are also
performed to control the pod, I/O modules, and probe, to collect
measurements, and to test UUT circuits like busses, RAM, and
ROM.

Although each function has a different name and list of
arguments, they are all invoked using the same syntax. See the
execute statement for more information on how functions are
invoked. All functions are marked with the word function in the
upper right corner of their description in Section 3.

A function has zero or more arguments. Each argument is an
expression resulting in a number or string. Refer to "How
Programs and Functions are Invoked" in Section 3 of the 9100
Series Programmer’s Manual for more information on calling
and returning data from functions.

Special Functions 2.7.1.

Special functions are functions with special restrictions on the
way they may be invoked. Special functions must be invoked
using the keyword notation, where the function name is
followed by a comma-separated list of the argument name
followed by an expression giving the value of the argument.

Pod Functions 2.7.2.
Pod functions control the microprocessor emulation pod to read
and write UUT data and perform tests on UUT circuits including
busses, RAM, and ROM.

/0 Module and Probe Functions 2.7.3.

These functions control the parallel I/O modules and the probe to
read and write bit streams to the UUT and collect signatures. ‘

2-20

Type Conversion Functions

2.7.4.

The following functions perform conversions between various

data types.

Function Description

ascii Converts a single-
character string into
its ASCII code
number,

chr Converts a number
from O through FF
(hexadecimal) or
from O through 255
(decimal) into a
single ASCII
character.

str Converts a number
into its string
representation.

val Converts a string
representing a
number into the
appropriate numeric
value.

cflt Converts a numeric
value to a floating-
point value.

cnum Converts a floating-
point value to a
numeric value.

Comments

See the ascii function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the chr function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the str function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the val function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the ¢flt function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the cnum function in the

"TL/1 Alphabetical Reference"
section of this manual.

2-21

fval Converts a string See the fval function in the
representing a "TL/1 Alphabetical Reference"
number into the section of this manual.
appropriate floating-
point value.

JIstr Converts a floating- See the fszr function in the
point value into its ~ "TL/1 Alphabetical Reference"
default string section of this manual.
representation.

TL/1 STATEMENT CONVENTIONS 2.8.

2-22

Statements control and modify the order-of execution in TL/1.
The parts of each statement are separated by reserved keywords,
so each statement has a unique syntax.

TL/1 defines two types of statements: simple statements, and
block statements. A simple statement performs a single action.
Block statements delimit the beginning and end of blocks and
control the execution of the statements they enclose.

Block statements always come in pairs; a block beginning
statement that begins with a name (if, loop, program), and a
block ending statement that has the form 'end name’ (end if, end
loop, end program). Statement lines between the block
beginning and ending statement are controlled by the block.

Simple statements and statements that delimit statement blocks
are marked with the word(s) statement or statement block in the
upper right corner of their description in Section 3.

In TL/1, each line contains either a single block statement or one
or more simple statements separated by backslashes (\). The
statements are executed in order from left to right. The line may
begin with an optional label, followed by a colon (:). The
statement may be followed by an optional comment, with an
exclamation point (!) separating the statement and comment.

Syntax Diagram:

L label - _I L statement J L [commentJ

Arguments:

label The name of the labeled line.
statement Any valid program statement.
comment The text of a comment.

The label, statement, and comment are all optional; a blank line
may be labeled, and lines do not need to be labeled. Label names
follow the same conventions used for naming variables. See the
section, "Name Conventions," earlier in this section for
additional information. The number of labels available to the
programmer is limited only by available memory, however the
availability of powerful block-structured commands in TL/1
eliminates the need for most labels.

A label identifies a line for subsequent use. A labeled line
begins with a label followed by a colon (:). A label is unique for
the entire program. No more than one line can be labeled with a
particular name.

A comment begins with an exclamation mark (!) and continues
until the end of the line. TL/1 ignores comments. Comments
make the program easy to read and understand, and should be
used to point out an action that is implied or not obvious.

Example 1:

! A line labeled jail
jail: if read addr a <> 0 then fault bad value

Example 2:

! A simple statement.
write addr $1000, data $21

Example 3:

a=1\b=2\c¢c=3 ! A simple statement
! list.

2-23

2-24

Example 4:

i=1
loop while i <= 10 ! A block beginning
! statement.
write addr + i, data $A0 + i
i=431i+1 ! The loop block will
end loop ! be executed ten
! times.

Section 3

TL/1 Alphabetical
Reference

Throughout this alphabetical reference section, the syntax of
various TL/1 statements is described in both textual (meta-
syntactic) and diagrammatic form.

The metasyntax notation follows these rules:

Words that are not enclosed in angle brackets (<>) are
required words and are to be used literally.

Words that represent names and values you supply are
delimited by angle brackets (< >).

A word or group of symbols separated by one or more
solid vertical bars (l) indicates that one, and only one, of
the group should be chosen.

A word or group of symbols enclosed in square brackets
[] are optional. If the first character in the group is a
comma (,), this comma is included as a delimiter only
when another optional group precedes it.

NOTE

In the declare command, square brackets are
used literally to define array dimensions.

3-1

b A word or group of symbols enclosed in braces { } can be
repeated any number of times, separated by commas (,).

* <device list> refers to one or more device names,
separated by commas ().

b <expression list> refers to one or more expressions,
separated by commas (,).

hd <variable list> refers to one or more variables, separated
by commas ().

hd <statement list> refers to one or more TL/1 statements,
separated by backslashes (V).

Refer to Figure 3-1 for an example of metasyntax notation.

3-2

I Command] | Choose One I [Optional Argumem]

‘ open [device <terminal name> | <flle name>] [, as <as>] [, mode <mode>]
| |

|

‘ Figure 3-1: TL/1 Metasyntax Notation

The syntax diagrams follow these rules: '

d Keywords - Words to be used literally appear in boldface.

i Arguments - Words that represent names and values you
supply appear in italics and are delimited by angle brackets
(<>). For example, the word "filename" in a syntax
diagram represents the name of a file that you specify.

b Solid lines - Solid lines connect keywords or symbols, and
programmer-supplied values. These lines represent the
syntax path, read from left to right. Vertical paths
represent options; horizontal paths with arrowheads
represent optional repeat loops.

d Ellipses (...) are used to connect syntax diagrams which,
due to length, span multiple lines. The ellipses indicate
"continue to type."

b <device list> refers to one or more device names,
separated by commas ().

d <expression list> refers to one or more expressions,
separated by commas (,).

® <variable list> refers to one or more variables, separated
by commas (,).

d <statement list> refers to one or more TL/1 statements,
separated by backslashes (\).

Refer to Figure 3-2 for a description of the syntax diagrams.

Command Choose One Required for Many TL/1 Commands
- L——————:I When No Arguments Are Used

O

open _ device < terminal name >
—[< filename >
as <as>
mode < mode >

'y

) 1

Comma is Iincluded Only if
Multiple Arguments are Used

Read syntax paths from left to right, unless an arrow-head
indicates a loop. Vertical paths represent options.

Figure 3-2: TL/1 Syntax Notation

3-6

On the first page of each command in the upper right corner
below the command name, is the syntactic category for that
command. The categories (function, special function, statement,
statement block, and operator) are described in Section 2 of this
manual.

Each command within the alphabetical reference section contains
information under some or all of the following headings:

o Syntax - a metasyntactic (textual) description of the syntax
for a particular TL/1 function or command.

o Syntax Diagram - a diagram which illustrates the syntax
for a particular TL/1 function or command.

® Description - a description of the TL/1 function or
command.

® Argument(s) - a description of the arguments which the
programmer provides to the TL/1 function. Some
arguments are optional, and have a default value if another
value is not specified.

i Returns - the value returned by a function.
¢ Example - one or more TL/1 programming examples.

b Remarks - additional information about a command or
function.

¢ Related Commands - other TL/1 commands which pertain

to the command discussed. Refer to these commands
within this section for related information.

b For More Information - a reference to other materials that
contain additional information about this command.
References are to the "Overview of TL/1" section of the
Programmer’s Manual, appendices within this manual, and
Fluke pod manuals.

abort

statement
Syntax:
abort [<expression>}
Syntax Diagram:
abort
I_ < expression > _}
Description:
Performs a multilevel return statement.
Example:
program control
function test
handle ! any fault raised within function
! test is handled here
print "aborting test" ! represents any other
! handler actions
fault ! preserve 'fails' termination
! status
abort ! causes function test to terminate

end handle

if (some_condition) then ! if some faulty
! behavior is detected
fault 'test fault'®
end if
end function

loop
if test () passes then
print "Pass"™

! often this program has

! no knowledge that the

! called function aborts.

! only interested in

! passes/fails information.

else

print "Fail"™
end if

end loop

end program

abort-1

abort

In the example, program ‘control’ calls function ‘test’
repeatedly. This is typical of a production test setup that calls
the test for each UUT. If the test fails, the procedure abandons
testing of that board and prints a failure message. The default
handler is invoked if any faults occur, and the fault statement
preserves the (failure) termination status of the test. The abort
statement returns control to the caller of function 'test’, which in
this case is program ‘control'. In actual examples, there are
likely to be many layers of function calls inside function 'test'.

Remarks:

abort-2

The abort command may be used in two ways. First abort can
terminate execution of the entire test program when the decision
to terminate is made in a deeply nested subprogram. The
command can also terminate execution of a sub-test within a
program when a fault condition is handled. The second use
permits simple go/no-go tests to be written, and the command
makes decisions on continuing tests once certain faults are
detected.

When the abort command is executed in the main-line code,
TL/1 terminates execution. If the optional expression is
specified, the value of that expression is returned, as if by the
top-level program.

When the abort command is executed within a fault condition
handler, all invoked programs and functions are terminated, up
to the program or function that activated the handler. (This is the
program or function that contains the handler definition block.)

If the optional expression is specified, the value of that
expression is returned, as if by the program or function that
activated the handler.

When the abort command is executed within a fault condition
exerciser, the exerciser terminates as if a return statement had
been executed in the top-level exerciser block.

abort

If a program or function invocation returns a value, a value must
be supplied to all places the invocation returns, including all
abort commands that cause the invocation to return. The type of
value returned must be the same in all return and abort
commands.

The abort command does not affect the termination status (for
example, whether the program passes or fails). If the test has
failed, a fault command should precede the abort.

Related Commands:

fault, function, handle, program, refault, return

For More Information:

d The "Overview of TL/1" section of the Programmer'’s
Manual.

abort-3

abort

abort-4

acos
function

Syntax:

acos num <expression>
acos (<expression>)

Syntax Diagram:

acos ——___ num < expression >

Description:

Returns the inverse cosine function (in radians) of the floating-
point argument value.

Arguments:
expression The argument (cosine) value, which
must be in the range:
-1.0 £ num £ 1.0.
Returns:

A floating point number in radians.

Examples:
theta = acos (0.0)
theta = acos num f
Remarks:

An error is generated if the argument value is outside the
allowable range.

acos-1

acos

Related Commands:

cos

acos-2

arm
function

itee-LG0
Syntax:
arm device <device list>
arm (<device list>)

arm ()

Syntax Diagram:

()
arm __L device « device list >

Description:

Specifies the beginning of an arm . . . readout block. Arms the
response gathering hardware of the specified I/O modules or
probe to start capturing signatures, levels, and count
information. If the counter mode is "freq", a frequency meas-
urement occurs at the arm statement. The actual point at which
response gathering starts depends on UUT signals and on the
settings of start, stop, clock, and enable when the sync mode is
set to "ext" for the probe or an I/O module.

Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")
Example 1:

mod = clip ref "u3", pins 40

arm device mod
rampdata addr 0, data 0, mask S$FF
rampdata addr 0, data 0, mask S$SFF00
readout device mod

arm-1

arm

Example 2:

arm device "/modl, /mod2"

readout device "/modl, /mod2"™

Example 3:

arm () ! The probe is the default device

readout () ! The probe is the default device
Example 4:

modlist = "/modl, /mod2, /mod3, /mod4™

arm device modlist

readout device modlist

Example 5:

devlist = "/mod1l"™ ! name the device

! set threshold levels
threshold device devlist, level "ttl"

! set counter mode
counter device devlist, mode "transition"

' sync device to external
sync device devlist, mode "ext"™
edge device devlist, start "+", stop "+", clock "+"
connect device devlist, start "U3-1", stop "U7-8",

clock "U4-8"

! ignore enable line

enable device devlist, mode "always"

arm device devlist ! start the response capture
! apply the stimulus
rampdata addr $8FFF, data 0, mask SFF

(example is continued on the next page)

arm-2

arm

! check that response
! gathering is complete
status = checkstatus device devlist

if status <> $F then
if (status and 1) = 0 then
reason = "no valid clock seen"™
else if (status and 2) = 0 then
reason = "no valid enable seen"
else if (status and 4) = 0 then
reason = "no valid start seen"
else if (status and 8) = 0 then
reason = "no valid stop seen"
end if
fault _flag

I
[

else
fault flag
end if

I
o

! terminate the response
capture

readout device devlist

Remarks:

The arm . . . readout block begins with an arm command and
ends with a readout command. These commands control the I/O
module or probe by activating and deactivating the response
gathering hardware.

The arm command clears the signature, level, and count registers
and starts the capture of new readings. The readout command
stops the capture of data and makes the results available. After
readout is executed, the captured response data is accessible
through the sig, count, and level functions until another arm . . .
readout block for the same device is executed.

When you use external sync, you use checkstatus to determine
when to exit the arm . . . readout block. You, the programmer,
are responsible for providing a means of exiting the block when
checkstatus indicates the response capture is complete and
successful. See the checkstarus command for more information.

arm-3

arm

Incomplete response data may be caused by any of the
following:

° An external stop line was specified, but the stop signal was
not active before readout was executed.

o The programmable stop counter was activated (through the
edge and stopcount commands) but the specified number
of clock pulses had not been counted before readout was
executed.

b An external start line was specified, but the start signal was
not active before readout was executed.

¢ Anexternal enable line was specified, but the enable signal
was not active before readout was executed.

o An external clock line was specified, but a clock signal
was not received before readout was executed.

Related Commands:

checkstatus, count, counter, edge, enable, level, readout,
setoffset, sig, stopcount, strobeclock, sync

For More Information:

g The "Overview of TL/1" section of the Programmer'’s
Manual.

arm-4

ascii
function

Syntax:

ascii char <character>

ascii (<character>)

Syntax Diagram:

ascll —______ char < character >

Description:

Finds the ASCII code number that represents the single character
in the operand string.

Arguments:
character Any character; a string which consists
of a single character.
Returns:

The numeric value of the ASCII code number that represents the
single character in the operand string.

Example:

x = ascii ("aA™) ! the variable x is set to
! the hex value 41 (decimal 65)

ascii-1

ascii

Remarks: ‘

An error is generated if the argument string is not exactly one
character long.

Related Commands:

chr

ascii-2

asin
function

Syntax:

asin num <expression>
asin (<expression>)

Syntax Diagram:

asln _______ num < expression >

Description:

Returns the inverse sine function (in radians) of the floating-
point argument value.

Arguments:
expression The argument (sine) value, which must
be in the range:
-1.0<num<1.0
Returns:

A floating point number in radians.

Examples:
theta = asin (0.0)
theta = asin num £

asin-1

asin

Remarks: ‘

An error is generated if the argument value is outside the
allowable range.

Related Commands:

sin

asin-2

assign
function

{EEE-LAaa
Syntax:
assign device <I/0 module name>
assign (<I/0 module name>)
assign ()

Syntax Diagram:

()

asslgn __[_ devlce < IO module name >

Description:

Allocates a specific I/O module to the programmer, resets the
internal variables that store connection data for that module, and
returns an identifier associated with the I/O module.

Arguments:
I/O module name The I/O module name ("/modl",
"fmod2", "/mod3", or "/mod4").
(Default = "/mod1")
Returns:

An identifier string for the I/O module.

Example 1:
mod2 = assign device "/mod2"
Example 2:

iomod = assign device "/mod4"™

assign-1

assign

Example 3:

stimulus = assign ("/mod3")

Remarks:
You use assign instead of clip in order to display your own
messages (rather than those displayed by clip), or to control
module selection (the clip function lets the user select the
module). This function returns a string which identifies the
selected module.

Related Commands:
clip

For More Information:

. The "Overview of TL/1" section of the Programmer’s
Manual.

assign-2

(assignment)
statement
Syntax:

<variable> = <expression>

Syntax Diagram:

< variable > = < expression >

Description:

Assigns a value to a variable. The variable on the left of the
equal sign takes the value of the expression on the right side.
The data type of the expression must be the same as the data type
of the variable. A previously undeclared variable is declared
implicitly with the assignment statement to be a local variable of
the same type as the expression used.

Arguments:
variable Assignment variable name.
expression Any valid expression.
Examples:
a = $15 ! variable a set to hex 15
y=a+1 ! variable y set to value of
! variable a plus 1
z = 10 ! variable z set to decimal 10

(assignment)-1

(assignment)

%]
I

"Hello" ! variable s 1is set to the
! string value "Hello".

f = 3.2 ! variable £ is set to the
! floating-point value 3.2

Remarks:

If the data type of the expression does not match the data type of
the variable, an error is generated.

Related Commands:

declare

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

(assignment)-2

assocC
function

Syntax:

assoc ref <reference designator>, pins <number of
pins>, device <device list>

assoc (<reference designator>, <number of pins>,
<device list>)

Syntax Diagram:

assoc ref < referance designator >

, pins < number of pins > , device « davice list >

Description:

Associates an I/O module or clip module with a UUT
component. Unlike the cl/ip command, the assoc command
requires that the specified I/O module or clip module already be
connected to the component.

Arguments:
reference designator Reference designator indicating the
name of the component to which the /O
module is already clipped.
number of pins Number of pins associated with this

reference designator. Valid range is any
even number between 2 and 254.

assoc-1

assoc

device list I/O module name, clip module name, or
combinations of these.

An I/O module name refers to a device
of 40 pins.

Example 1:

devicelist = "/modl, /mod2B, /mod3A, /mod4B"
assoc ref "Ul1l", pins 80, device devicelist
arm device devicelist

readout device devicelist
crc = sig device "Ul1l", pin 1

Example 2:

Rema

assoc-2

assoc ref "U23", pins 14, device "/mod4A™
rks:

When using fixturing, the placement of the I/O module clips is
preset so it is unnecessary and undesirable to press the ready
button on each of the clips (as required by the clip command). In
this case, the assoc command should be used.

The assoc command is functionally equivalent to the clip
command except that the device list is set in the TL/1 program by
the programmer rather than being determined by the /O module
button that is pressed.

NOTE
The operator must position the clip(s) so that pin 1 of

the clip(s) is connected to pin 1 of the component
before the execution of the assoc command.

assoc

You should use the clip command instead of the assoc command
if you want to perform the following operations:

bd Suspend operations until a ready button is pressed on the
I/0 module.

® Display the standard clip messages.
Related Commands:
assign, clip

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

assoc-3

assoc

assoc-4

atan
function

Syntax:

atan num <expression>
atan (<expression>)

Syntax Diagram:

atan_____________ num < expression >

Description:

Returns the inverse tangent function (in radians) of the floating-
point argument value.

Arguments:

expression The argument (tangent) value.

Returns:

A floating-point value in radians.

Examples:
theta = atan (0.0)
theta = atan num f
Remarks:

Argument values of infinity are not supported, since the
implementation of floating-point does not support IEEE infinity.

Related Commands:

tan

atan-1

atan

atan-2

bitmask
opetrator

Syntax:
bitmask <expression>

Syntax Diagram:

bitmask < expression >

Description:

Generates a bitmask in which all the bits from bit O (the least-
significant bit) through the bit specified by the expression are

set.
Arguments:
expression An expression that yields a number
from O through 31 (decimal), or a
number from 1 through 1F (hexa-
decimal).
Returns:

A bitmask with all the bits set from bit 0 through the bit specified
by the expression.

Examples:

X = bitmask 3 ! the variable x is set to F
! (bits 0 through 3 are set)

bitmask-1

bitmask

X = S$F and bitmask 2 ! the variable x is set to 7 ‘
! (bits 0 through 2 are set)

Remarks:

An error is generated if the argument is greater than 31
(decimal).

Related Commands:

setbit

bitmask-2

cflt

function
Syntax:

cflt num <expression>

cflt (<expression>)

Syntax Diagram:

cft — . NuUmM < expression >

Description:

Converts the numeric argument to the equivalent floating-point
value. The argument can be any valid numeric value.

Arguments:
expression The numeric argument value.
Returns:

A floating-point number equivalent of the value of the argument.

Examples:
f = cflt ($32)
f = cflt num 109

Related Commands:

cnum

cflt-1

cfit

ctit-2

checkstatus
function

Syntax:
checkstatus device <device list>
checkstatus (<device list>)
checkstatus ()

Syntax Diagram:

()

checkstatus 4_ device « device list >

Description:

Checks whether response gathering is complete within an arm
... readout block. The return value of checkstarus indicates the
result of this check.

Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe™)
Returns:

A code indicating whether response gathering is complete (see
Remarks).

checkstatus-1

checkstatus

Example: ‘

! This example uses checkstatus to check
! for an incomplete responses error.

sync device “/modl", mode “ext"

arm device "/modl"™
cnt = 0
loop while ((checkstatus device "/modl") <> S$F
and cnt < 100)
! Remember precedence of <>
! operator
cnt = cnt + 1

end loop

if znt = 100 then
! response gathering incomplete

n = checkstatus device "/modl"™

else ! response gathering is complete
n = $FF

end if

readout device "/modl™

Remarks:

The checkstatus function usually appears on the right side of an
assignment statement (=), or within the context of a more
complex expression.

The checkstatus function has real meaning only for external
sync. In this case, the returned value is comprised of 32 bits
with the 4 least-significant bits containing the status of response
gathering. (Bit 0 is the least-significant bit.)

Bit Signal Value

4-31 none (always 0)

3 Stop received (1 =yes, 0 =no)
2 Start received (1 =yes, 0 =no)
1 Enable received (1 =yes, 0 = no)
0 Data clocked (1 =yes, 0 =no)

checkstatus-2

checkstatus

‘ For the other sync modes, (internal, pod, and freerun), the
returned value will always be the number F (hexadecimal).

Related Commands:
arm, readout, sync

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

checkstatus-3

checkstatus

checkstatus-4

chr
function

Syntax:

chr num <expression>
chr (<expression>)

Syntax Diagram:

chr _______ num < expression >

Description:

Returns a string consisting of the single ASCII character that
corresponds to the numeric operand.

Arguments:
expression A numeric expression that yields a
value from O through FF (hexadecimal)
or 0 through 255 (decimal).
Returns:

A string consisting of the single ASCII character that
corresponds to the numeric operand.

Examples:
x = chr(7) ! x is set to Ctrl-G (bell)
x = chr($23) ! x is set to ASCII character "#"
x = chr(35) ! x is set to ASCII character "#"

chr-1

chr

Remarks: .

An error is generated if the numeric expression is greater than
decimal 255.

Related Commands:

ascii

chr-2

clearoutputs
function

{EEE-LAOB
Syntax:

clearoutputs device <device list>
clearoutputs (<device list>)

clearoutputs ()

Syntax Diagram:

()
clearoutputs __J... device < device list >

Description:

Turns off the 1/O module output drivers.

Arguments:
device list I/O module name, clip module name, or
reference designator.
(Default = "/mod1")
Example:

iomod = clip ref "u2l",pins 40

storepatt device "u2l",pin 1, patt "01010101"

writepatt device "u2l", mode "latch"

clearoutputs device "u2l"

clearoutputs-1

clearoutputs

Remarks:

Using clearoutputs is functionally equivalent to using both
storepatt and writepatt to 3-state all pins. Devices can be cleared
through specification of an I/O module, a clip on an I/O module,
or a reference designator.

Related Commands:
clearpat, storepatt, writepatt

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

clearoutputs-2

clearpatt
function

Syntax:

clearpatt device <device list>
clearpatt (<device list>)

clearpatt ()

Syntax Diagram:

)

clearpatt —L device < device list >

Description:

Discards the output patterns previously saved with the storepatt

command.
Arguments:
device list I/O module name, clip module name,
reference designator.
(Default = "/mod1")
Example:

clearpatt device "/mod4"
Related Commands:

clearoutputs, storepatt, writepatt

clearpatt-1

clearpatt

For More Information: ‘

. The "Overview of TL/1" section of the Programmer’s
Manual.

clearpatt-2

clearpersvars

function
Syntax:

clearpersvars ()

Syntax Diagram:

clearpersvars O

Description:

Clears the values of currently active persistent variables. The
term "currently active" means the subset of the set of persistent
variables that is known so far by the TL/1 program executing the
clearpersvars command. The value received as a result depends
on the variable type:

numeric 0
floating 0.0
String "t

Example:

For each of the following example programs, assume that the
persistent variable set initially contains:

Name Type Value
pvl numeric 3

pv2 string "foo"
pv3 string "bar"”

clearpersvars-1

clearpersvars

After executing the following program:

program itis
declare persistent numeric pvl
declare persistent string pv2
clearpersvars ()

end program

the persistent variable set contains:

Name Type Value
pvl numeric 0
pv2 string o
pv3 string "bar"

After executing the following program:

program mobility
declare persistent string pv3
function foober
declare persistent string pv2
end function
clearpersvars ()
end program

the persistent variable set contains:

Name Type Value
pvl numeric 3
pv2 string "foo"
pv3 string e

clearpersvars-2

clearpersvars

‘ Remarks:

The clearpersvars command only affects the values associated
with variables in the persistent variable set, and not whether a
variable is a member of the set.

Note that it is stated that the clearpersvars command only affects
the set of persistent variables known so far by the currently
executing TL/1 program. If the program contains a declaration
for a persistent variable, but has not processed it, the variable
will not be cleared.

Related Commands:

resetpersvars

clearpersvars-3

clearpersvars

clearpersvars-4

clip
function

Syntax:

clip ref <reference designator>, pins <number of
pins>

clip (<reference designator>, <number of pins>)

Syntax Diagram:

clip —_ ref < reforence designator > —— , pins < number of pins >

Description:

Prompts the user with a message to clip over the specified
component and to press the button on the clip module when
ready. After the button is pressed, the clip command returns a
string identifying the I/O module and the clip module that were
selected.

Arguments:

reference designator ~ Reference designator indicating the
name of the component to which the I/O
module should be clipped.

number of pins Number of pins associated with this
reference designator. Valid range is any
even number between 2 and decimal
254.

clip-1

clip

Returns:

A string that identifies the selected module(s) and clip
module(s).

Example 1:

iomod = clip ref "ul", pins 24

Example 2:

iomod = clip ("ul",24)

Remarks:

clip-2

The clip command prompts the operator to select a clip module,
clip it to a specific component and press the ready button on the
clip module. The clip command determines which clip module
the operator has selected by returning a string which identifies
the module name and button (A or B) pressed. You use this
name as an argument in TL/1 function calls to the I/O module.

This command allows you to specify the component to which an
I/O module should be clipped. The 9100A/9105A software
remembers that the I/O module is clipped to this component.

NOTE

The operator must position the clip so that pin I of
the clip is connected to pin 1 of the component.

You should use the assign command instead of the clip
command if you do not want to perform any of the following
actions:

® Prompt the operator.

b Suspend operations until a ready button is pressed on the
I/O module.

¢ Display the standard clip messages.

clip

Related Commands:
assign

For More Information:

g The "Overview of TL/1" section of the Programmer'’s
Manual.

clip-3

clip

clip-4

close

function
Syntax:

close channel <channel expression>
close (<channel expression>)

Syntax Diagram:

close —_____ channe!l < channel expression >

Description:

Closes the I/0 channel whose channel number matches the value
of an expression.

Arguments:

channel expression Numeric expression which evaluates to
a valid channel number.

Example 1:

n = open device "/terml", as "output"

close channel n

Example 2:

kp = open device "filel", mode "unbuffered”

close (kp)

close-1

close

Remarks:

In large programs, it is important to close each file channel once
the program has executed. The total number of channels that
may be open at one time is limited.

Related Commands:
input, input using, open, poll, print, print using

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

close-2

cnum
function

=)
Syntax:

cnum num <expression>
cnum (<expression>)

Syntax Diagram:

chum ___________ num < expression >

Description:

Converts the floating-point argument to the nearest numeric
value (by rounding).

Arguments:
expression The floating-point argument value,
which must be within the range
0.0 < expression <2”-1.
Returns:

A numeric value,

Examples:
n = cnum (32.0) ! n is set to 32
n = cnum (100.6) !' n is set to 101
n = cnum num 10E2 ! n is set to 1000
n = cnum num -33.0 ! this results in an error

Related Commands:

cflt

cnum-1

cnum

chum-2

compare
function

Syntax:

compare [device <device name>] [, patt <pattern
string>] [, state <state string>]

compare (<device name>, <pattern string>, <state
string>)

compare ()

Syntax Diagram:

)

compare device <« device name >
- patt < pattem string >
|- state < stalo string >

L s .

Description:

Monitors pins on an I/O module for the occurrence of the
specified pattern and generates a "iomod_dce" fault condition
when a match occurs.

Arguments:

device name I/O module name, or clip module name.
(Default = "/mod1")

pattern string String expression for the comparison
pattern. The left-most character in the
pattern string corresponds to pin 1.
(Default ="1")

state string "enable” or "disable" comparison.

(Default = "enable")

compare-1

compare

Example 1: ‘

compare device "/mod2", patt "1011100XXXX11X",
state "enable"

Example 2:
compare ("/modlA", "1111111111111111", "disable™)

Example 3:

program test9

handle iomod_dce ! This handler is called
! whenever the bit
! pattern specified in a

print “"successful DCE"! compare command

! matches the pattern on
! pins being monitored
! by an I/0 module

end handle

compare device "/modl", patt "10111XXX001"

end program

Remarks:

A fault condition is generated when the specified bit pattern is
detected. The compare command might be used to generate a
fault condition when a particular UUT address is accessed or
when particular data is on the data bus.

The pattern is specified as a single string that may contain the
following characters:

1: high
0: low (or invalid levels)
x or X: don't care

Note that both low levels and invalid levels are considered to be
low when making comparisons.

compare-2

compare

‘ The characters in the string are mapped onto pins with the left-
most character corresponding to pin 1. For example, if you
want to detect when pins 1, 2, and 3 are high and when pins 12,
13, and 14 are low (and you do not care about the state of pins
4-11), you specify the pattern "111XXXXXXXX000".

You can specify the pattern in terms of clip pins or I/O module
pins. If the device has more pins than the pattern, the excess
pins are ignored.

The compare command may be used to compare a pattern string
with up to 40 pins if they are all on the same I/O module and
depending on what clip module is used.

The data compare equal (DCE) condition is detected as soon as it
occurs, but the resulting DCE fault condition is raised only when
an I/O module or probe function is executed or when a pod-
access function is executed.

For More Information:

‘ i The "Overview of TL/1" section of the Programmer’s
Manual.

compare-3

compare

compare-4

connect
function

Syntax:

connect [device <device list>] [, start
<ref pin 1>] [, stop <ref pin 2>] [, clock
<ref pin 3>] [, enable <ref pin 4>] [, common
<ref pin 5>] [, clear <clear state>]

connect (<device list>, <ref pin 1>, <ref pin 2>,
<ref pin 3>, <ref pin 4>, <ref pin 5>,
<clear state>)

connect ()

Syntax Diagram:

()
connect __J_.__ device « device list >

| start <refpini1>
|- stop «<refpin2>
|- clock «<refpin3> |
L enable <refpin4> _]
| common «<refpin5>_]
| clear «clear state >_|

L 4+ —a——

Description:

Prompts the operator to connect the external lines (START,
STOP, CLOCK, ENABLE, and COMMON) for the probe or an

I/O module.
Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")
ref pin 1 Pin to which external start should be

connected.
(Default = "not used")

connect-1

connect

ref pin 2 Pin to which external stop should be
connected.
(Default = "not used")

ref pin 3 Pin to which external clock should be
connected.
(Default = "not used')

ref pin 4 Pin to which external enable should be

connected.
(Default = "not used")

ref pin 5 Pin where the common lead should be
connected.
(Default = "not used")

clear llycsll Or "noll
(Default = "no")

Example 1:

mod = clip ref "U22",pins 40
connect device mod, start "U33-1", stop "Ul8-2",
enable "U44-2", clock "U4-5", common "U5-7"

Example 2:
connect device "/mod3", start "U2-7", stop “"U22-8"
Example 3:

connect ("/modl"™,"U3-6","Ul12-10","Ul5-6",
"U2_16", "TPl", "nO")

This connect command prompts the operator
to connect the external lines of I/0 module
#1 as follows:

STOP to Ul2 pin 10
CLOCK to Ul5 pin 6
ENABLE to U2 pin 16

1

!

!

!

! START to U3 pin 6

t

!

!

! COMMON to test point 1

connect-2

connect

Example: 4

connect device "/mod3", clear "yes"

! Resets all connection data to "not used"®

Remarks:

The connect command prompts the operator to connect the
external lines (START, STOP, CLOCK, ENABLE, and
COMMON) for the probe or an I/O module and press the ready
button on the probe or I/O module adapter. Program execution
is suspended until a Ready button is pressed.

If all the external lines are already positioned correctly, the
operator is not required to press the ready button. The current
positions are displayed on the operator's display. The connect
command also causes the system to update its internal table of
the UUT locations of the external lines.

The clear argument for the connect command can be used to
reset all connection data for the specified device list. If the clear
argument is "yes", all connection data is reset to default values
("not used"). If the clear argument is "no", the other arguments
in the connect command are used to set connection data. If any
changes in connection data result from a connect command, the
operator is prompted to make the connections.

Related Commands:

sync

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

connect-3

connect

connect-4

COS
function

{iEEE-LBO
Syntax:

cos angle <expression>
cos (<expression>)

Syntax Diagram:

cos ... angle < expression >

Description:

Returns the cosine function of the floating-point argument value.

Arguments:
expression A floating-point value, expressed in
radians.
Returns:

A floating-point value between -1.0 and 1.0.

Examples:
£f = cos (0.0)
f = cos angle theta

Related Commands:

acos, natural

cos-1

Cos

cos-2

count
function

Syntax:

count [device <device name>] [, pin <pin number>]
[, refpin <refpin name>]

count (<device name>, <pin number>, <refpin name>)

count ()

Syntax Diagram:

()

count _,__ device <« device name > l

|~ pIn < pin number >
.. refpin < refpin name > _|

-4 -
< ’ <

Description:

Reads the count or frequency data for one pin. This command
will return useful information only after an arm . . . readout
block has taken a measurement.

Arguments:
device name 1/O module name, clip module name,
probe name, or reference designator.
(Default = "/probe")
pin number Pin number.
(Default = 1)
refpin name Specifies the device and pin in string

format. The refpin argument is used to
override the device and pin values.
(Default ="")

count-1

count

Returns: .

The count or frequency (a number). Bit 31 (decimal) is set high
if the count overflows.

Example 1:

arm device "/probe"

readout device "/probe"
probecount = count device "/probe"

Example 2:

arm device "/modl"™

readout device "/modl"™

countl = count device "/modl", pin 1

count2 = count device "/modl", pin 2

count3 = count device "/modl", pin 3
Example 3:

mod = clip ref "U3", pins 24

arm device mod
execute stim prog
loop while checkstatus (mod) <> S$F
end loop

readout device mod

modcount = count device "U3", pin 22

count-2

count

‘ Example 4:

mod = clip ref "Ul1l", pins 20

arm device mod

readout device mod

modcount = count refpin "Ul-A"
! refpin is used because
! the pin name is a string
! value, not a number.

Remarks:

The count function returns the count or frequency for one pin.
The data can be requested in terms of an I/O module pin or a
component pin.

The count or frequency can be requested for a specific pin of an

‘ I/O module by specifying the module name ("/mod1", "/mod2",
etc.) as the device argument. The pin argument is interpreted as
an I/O module pin. Refer to Appendix E for tables that show
what I/O module pin numbers to use for every possible clip
module.

If a component name ("U1", "U2", etc.) is specified as the
device argument, the pin argument is interpreted as a component
pin. The count function determines the I/O module and pin
number that corresponds to the specified component pin. The
indicated component must have been previously named in a clip
command.

If the string value for refpin is not a null string (""
of the device and pin arguments are ignored.

), the values

The count function should be used only after the execution of an
arm . . . readout block.

The counter mode to be used by the count function is set by the
counter command.

count-3

count

Related Commands:

arm, counter, level, readout, sig

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

count-4

counter
function

Syntax:

counter [device <device list>] [, mode <mode name>]
counter (<device list>, <mode name>)

counter ()

Syntax Diagram:

)

counter _l__ device <« device list >

| . mode < modename > _|

- Y
- ' -

Description:

Sets the counter mode for the probe or an I/O module.
Allowable modes are transition count or frequency.

Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe™)
mode name "transition", or "freq".
(Default = "transition")
Example 1:

mod = clip ref "ul", pins 40
counter device mod, mode "transition"

counter-1

counter

Example 2:

counter ("/modl"™, "freq")
Example 3:
counter device “/probe,/modl", mode “transition"®

! the whole list of devices uses
! the specified mode

Related Commands:
arm, count, readout

For More Information:

hd The "Overview of TL/1" section of the Programmer’s
Manual.

counter-2

cwd
function

Syntax:
cwd ()
Syntax Diagram:

cwd ()

Description:
Returns the current working directory as a string.
Returns:

The current working directory is returned as a string. If program
execution began in a UUT directory, cwd returns a string of the
form "/userdiskname/uutname" as in "/HDR/ABC". If execution
began in the podlib, cwd returns a string of the form
"/fuserdiskname/PODLIB/podname"” as in
"/HDR/PODLIB/80286". If execution began in the proglib, cwd
returns a string in the form "/userdiskname/PROGLIB", as in
"/DR1/PROGLIB".

Example:

d = cwd()

if instr (d,"PODLIB") or instr (d,"PROGLIB") then
print "Current directory is not a UUT".

end if

Remarks:

The current working directory is the directory from which
program execution began, not the directory of the program
currently being executed. This distinction is important for
programs in the proglib and podlib.

The string returned by cwd can be useful when constructing
absolute file names for text files.

cwd-1

cwd

Related Commands:
filestat, open, close

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

cwd-2

dbquery

special function

Syntax:
dbquery dbname

dbquery expresp <refpin name>, response <response
file name>

dbquery inputs <refpin name>
dbquery node <refpin name>
dbquery npins <ref>

dbquery pintype <refpin name>
dbquery programs <refpin name>

Syntax Diagram:

dbquery — dbname

... 0Xpresp «<refpinname > , response < response name >
L Inputs < refpin name >

|— node < refpin name >

L— npins < ref>
| — pintype <refpin name >

L. programs < refpin name >

Description:

The dbquery commands allow a TL/1 program to retrieve
information from the Compiled UUT Database.

Options:
dbname (Has no argument value)
This option returns a string containing
the name of the UUT compiled database
("GFIDATA" or "UFIDATA"). If the

UUT does not contain a compiled
database, an empty string is returned.

dbquery-1

dbquery

expresp

inputs

node

npins

dbquery-2

<refpin name>, response <response
file name>

This option returns the expected
response data for the named pin and
stimulus program. The data is returned
as a comma-separated list of
"type=value" pairs, where type is "sig",
"alvl", "clvl", or "count", and value is
the data that appears in the response
file. The list will only contain the types
of response data that will be used to
compare.

<refpin name>

This option returns a string containing a
comma-separated list of related input
pins for the named pins. An empty
string is returned if the database does
not contain the named pin or it has zero
related inputs.

<refpin name>

This option returns a string containing a
comma-separated list of pins that are
members of the same node as the
named pin. If the database is for UFI
(which does not use a nodelist), an
empty string is returned. If the
database is for GFI and the named pin
did not appear in the nodelist, an empty
string is returned.

<ref>

This option returns a string containing
the number of pins on the named
reference designator. If the database
does not contain the named reference
designator, an empty string is returned.

dbquery

‘ pintype <refpin name>

This option returns a string identifying
the pin type of the named pin ("INP",
IIOUT", IIBIDII, IIPWRII, |IGNDII’ Or
"UNU"). An empty string is returned
if the database does not contain the
named pin.

programs <refpin name>

This option returns a comma-separated
list of TL/1 stimulus programs that will
be used to test the named pin. This
includes programs that test the pin as an
input and programs that test it as an
output. If the database does not contain
the named pin, or if the database does
not describe how to test the named pin,
an empty string is returned.

‘ Example 1:

! print the list of pins that are on the same
! node as Ul-25
print "node = ", (dbquery node "U1-25")

Example 2:
! print the number of pins on R33

n = dbguery npins "R33"
print "R33 has ", n, " pins"

Example 3:

! This example prints the list of programs
! that are used to test Ul-b4:
list = dbguery programs "Ul-b4"
print "Ul-b4 is tested by the following programs: ", list

dbquery-3

dbquery

Remarks:

The compiled UUT database is used by the resident GFI
software. The 9100A/9105A will automatically load the database
off disk and into memory the first time a dbquery command is
executed. However, you must use the gfi clear command to
unload the database when you are finished accessing it. Failure
to do so will decrease the amount of memory available to the
9100A/9105A.

Refer to the Programmer’s Manual for a description of GFI and
for information on how to create a UUT database for GFL

Related Commands:
gfi clear

For More Information:

® The "Guided Fault Isolation (GFI)" section of the
Programmer’s Manual.

dbquery-4

declare (block form)
statement block

Syntax:
declare

Syntax Diagram:

declare

Description:

Specifies the beginning of a declaration block.

Example 1:
declare
numeric u local numeric
string v local string

! value zero

1
!

numeric w = 0 ! local numeric with default
]
! local floating with default

floating £ = 1.3
end declare

Example 2:
declare
global numeric 'last address'
persistent string lastmsg

end declare

Remarks:
Declarations take effect for the entire block that encloses them.
All declarations must appear before any executable statements in
the enclosing block.
Persistent variables may not be declared as arrays.

Arguments to the enclosing block may not be declared as global
or persistent variables.

declare (block form)-1

declare (block form)

Related Commands:

declare (statement form), end, exercise, function, handle, .
program

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

declare (block form)-2

declare (statement form)
statement
Syntax:

declare [global|persistent] numeric|string|floating
<name> [=<default value>]

declare [global|persistent] numeric|string|floating
array [<array dimensions>] <name>

<array dimension>
[<number>:<number> {, <number>:<number>}]

Syntax Diagram:

declare numeric < hame »
global

I: l: floatlnﬂ_ L_ = < default value > _l
persistent __| string

declare numerlc array [1 <name > —

Foona I o

<humber> ___: __ <number>

- ’ g

Description:

Declares the scope, data type, and name of a single variable.
Also defines the dimensions of an array.

Arguments:
name Name of the variable being declared.
default value An explicit value initially assigned to

the variable. (Optional.)

declare (statment form)-1

declare (statement form)

array dimensions Specification of the dimensions of the
array. Each dimension gives the first ‘
and last permitted value of the
corresponding subscript expression.

Example 1:

declare numeric array [1:10,1:10] x
! variable x is a 10x10 array with 100 cells
! and has the numeric data type.

Example 2:

declare numeric nano
! nano is declared as a numeric variable

Example 3:

declare global string hi_all
! the name hi_all is a string variable with
! global scope

Example 4:

declare floating £ = 7.99
! £ is declared as a floating-point variable
' with a default valve of 7.99

Example 5:

declare persistent numeric perseus
! perseus is declared as a
! persistent numeric variable

Remarks:
Declarations take effect for the entire block that encloses them.
All declarations must appear before any executable statements in
the enclosing block.
Persistent variables may not be declared as arrays.

Arguments to the enclosing block may not be declared as global
or persistent variables.

declare (statment form)-2

declare (statement form)

‘ Related Commands:
declare (block form), exercise, function, handle, program

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

declare (statement form)-3

declare (statement form)

declare (statment form)-4

define menu
special function
Syntax:

define menu <menu name>, [, label <label>] [, key <key>]
[, submenu <submenu name>]

Syntax Diagram:

deflne menu < menu hame >

|__ , label <Iabel>___]

I_ , key < key > _l L_ , submenu < submenu name > _]

Description:
Defines a menu or menu item.
Arguments:

menu name Name of the menu or menu item being
defined. If the menu already exists, the
arguments included in the define menu
command are modified. If the menu
does not exist, a new one is created.

label Label to be displayed for the menu
item. If not specified, and a new menu
item is being created, it will default to
the menu identifier.

key The key to be associated with the menu
item. Only the first character is
significant. If there is no key code, that
menu item can only be selected using
cursor or button controls.

define menu-1

define menu

submenu name The submenu points to another menu ‘
(the MMMM part of the identifier). If
this item is selected, the menu defined
becomes the new menu.

Example:

define two menus, one called M1l and one
called M2. M1l allows the keys 1, 2, and 3
to be used to select menu items. Menu M2
does not use key entry. If item M1-C is
selected, menu M2 becomes active.

define menu "M1-A", label "RAM test", key "1"

define menu "M1-B", label "ROM test"™, key "2"

define menu “M1-C", submenu "M2", label "other
tests", key "3"

define menu "M2-A", label "BUS test"®

define menu "M2-B", label "I/0 test™

Remarks:

Menu definitions are used by the readmenu command when
displaying to or reading from a menu on the monitor.

Menu entry identifiers are strings of the form "MMMM-IIII".
The characters in front of the first "-" are considered to be the
menu name. All menu entries with the same menu name are
collected together into the same menu. The menu items are listed
in the order they are defined for that menu. The entry IIII is the
item name for the menu. This is significant when using
readmenu. When readmenu returns a menu selection, it returns
"MMMM-IIII" as it was defined by the define menu command.
That is, the identifier is used to indicate which selection was
made on the menu.

define menu-2

define menu

Passing an identifier such as "MMMM" with no item causes a
menu to be created with no items if none exists, and does
nothing if the menu already exists.

If a menu item already exists, specifying it will cause the
elements of the menu item to be modified. Only the items
included in the define menu command will be modified.

Once a TL/1 invocation has started, the menu definitions are
global and remain in force until explicitly removed using the
remove command, or until TL/1 is restarted. TL/1 is restarted
whenever you press the REPEAT or EXEC keys on the
operator's keypad, by pressing the INIT softkey when in the
debugger, or by pressing the EXECUTE softkey when in the
debugger if a program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many menu definitions are to
be made (and the program is intended to be run indefinitely), it is
good practice to remove menu definitions using the remove
command. This practice will prevent memory from being
consumed by unused or obsolete definitions.

Related Commands:

readmenu, remove

For More Information:

A The "Overview of TL/1" section of the Programmer's
Manual.

define menu-3

define menu

define menu-4

Syntax:

define mode
special function

define mode <mode name>, attribute <attrlist>

Syntax Diagram:

deflne mode < mode name >

, attribute < attrlist >

Description:

Used to define the way a reference designator mode is displayed
in a window.

Arguments:
mode name A name you select to refer to this mode
definition. Recommended names are
"testing", "passed”, "failed",
"untested", and "partial".
attrlist "normal", "blink", "bold", and
"inverse". Combinations are also
allowed, if separated by commas but
including no spaces.
If "normal" appears in the comma-
separated list, the attributes preceding
"normal" in attrlist are ignored.
Example:
define mode "testing", attribute "blink™
define mode "passed™, attribute "blink,bold"
define mode "failed", attribute "inverse"

Drawing a ref in testing mode results in a
blinking part, passed mode results in
blinking bold, and failed mode results in
inverse video.

define mode-1

define mode

Remarks:

Mode definitions are used by the draw ref command to draw the
parts of a UUT and to display the status of testing for that UUT
in a window on the monitor.

The modes “testing”, "passed"”, "failed", "partial" (partially
passed, not completely tested) and "untested” are the set of
recommended modes. There is however no enforced restriction
on mode names.

Once a TL/1 invocation has started, the mode definitions are
global and remain in force until explicitly removed using the
remove command, or until TL/1 is restarted. TL/1 is restarted
whenever you press the REPEAT or EXEC keys on the
operator's keypad, by pressing the INIT softkey when in the
debugger, or by pressing the EXECUTE softkey when in the
debugger if a program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many mode definitions are to
be made (and the program is intended to be run indefinitely), it is
good practice to remove mode definitions using the remove
command. This practice will prevent memory from being
consumed by unused or obsolete definitions.

Related Commands:
draw, draw ref, remove

For More Information:

A The "Overview of TL/1" section of the Programmer’s
Manual.

define mode-2

define part
special function
Syntax:

define part <part name>, xdim <xsize>, ydim <ysize>
[, xdot <hlocation>, ydot <vlocation>]

Syntax Diagram:

doflne part < part name > , xdim < xsize > , ydlm < ysize >

I._ , Xdot < hiocation > , ydot < viocation > _J

Description:

Used to define a part shape and size for the draw commands.
Defining a part causes no action to take place on the monitor.

Arguments:

part name A name you select to refer to this part
definition.

Xsize Horizontal size of the part to be
displayed in scaled window coordinates
(see the open command).

ysize Vertical size of the part to be displayed
in scaled window coordinates (see the
open command).

hlocation Horizontal location of the alignment dot
within the part in scaled window
coordinates. If xdot and ydot are not
specified, there is no dot displayed.

vlocation Vertical location of the alignment dot

within the part in scaled window
coordinates. If xdot and ydot are not
specified, there is no dot displayed.

define part-1

define part

Example 1: .

define part "dip", xdim 3, ydim 10, xdot 0, ydot O

! A part name "dip" will be created with
! scaled window dimensions of (3,10) and a
! dot located in the upper left-hand corner.

Example 2:

define part "box", xdim 10, ydim 10

! A part named box with no dot will be

! created with scaled window dimensions of
! (10,10).

Remarks:

Part definitions are used by the draw ref command to draw a
UUT in a window on the monitor. To display a part, you first
define its shape and size with the define part command, then you
give it a reference designator name and a location with the define
ref command, and finally draw the part on a window of the
monitor with the drawref command. Doing a define part on an
existing part causes the information to be replaced with the new
information.

Once a TL/1 invocation has started, the part definitions are
global and remain in force until explicitly removed using the
remove command, or until TL/1 is restarted. TL/1 is restarted
whenever you press the REPEAT or EXEC keys on the
operator's keypad, by pressing the INIT softkey when in the
debugger, or by pressing the EXECUTE softkey when in the
debugger if a program is not currently executing.

define part-2

define part

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many definitions are to be
made (and the program is intended to be run indefinitely), it is
good practice to remove part definitions using the remove
command. This practice will prevent memory from being
consumed by unused or obsolete definitions.

Related Commands:
define ref, draw, draw ref, open, remove

For More Information:

i "The Overview of TL/1" section of the Programmer’s
Manual.

define part-3

define part

define part-4

Syntax:

define ref
special function

define ref <ref name> [, xorg <xlocation>] [, yorg

<ylocation>]
<mode name>]

Syntax Diagram:

deflne ref < refname >

[, part <part name>] [, mode

L , xorg < xlocation > __I

L__ , yorg <ylotion>_] I_, part <partname>_J

l._ , mode < mode name > __]

Description:

Used to define a reference designator. It associates a reference
designator name with a location in a window and a part shape
previously defined by the define part command. To display the
reference designator, use a draw command.

Arguments:
ref name

xlocation

ylocation

A reference designator name you select.

A numeric expression for the horizontal
location (in scaled window coordinates)
of the upper left-hand corner of the ref.

If xorg is not specified, the old
horizontal location is unchanged. If

xorg was never specified, it defaults to
0.

A numeric expression for the vertical
location (in scaled window coordinates)
of the upper left-hand corner of the ref.

define ref-1

define ref

If yorg is not specified, the old vertical
location is unchanged. If yorg was
never specified, it defaults to 0.

part name Part name of a define part definition. (If
not specified, the part shape is
unchanged).
mode name The name of the current display mode
for the component. (If not specified,
the mode is unchanged).
Example:

define ref "U3", xorg 1, yorg 1, part "dip", mode
"untested"

! A ref defined as U3 will be at location 1,1
! drawn with the part shape and size

! specified in the part definition named

! "dip". The display mode will be that

! specified for untested components.

Remarks:

Reference designator definitions are used (along with define part
commands) by a draw command to draw UUT components in a
window on the monitor.

Once a TL/1 invocation has started, the ref definitions are global
and remain in force until explicitly removed using the remove
command, or until TL/1 is restarted. TL/1 is restarted whenever
you press the REPEAT or EXEC keys on the operator's keypad,
by pressing the INIT softkey when in the debugger, or by
pressing the EXECUTE softkey when in the debugger if a
program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many definitions are to be
made (and the program is intended to be run indefinitely), it is
good practice to remove reference designator definitions using

define ref-2

define ref

the remove command. This practice will prevent memory from
being consumed by unused or obsolete definitions.

A run-time error is caused by attempting to draw a ref with no
part defined or with no mode defined for the part.

Related Commands:
define part, draw, draw ref, open, remove

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

define ref-3

define ref

define ref-4

define text
special function
Syntax:

define text <text name>, label <label>, xorg
<xlocation>, vyorg <ylocation> [, attribute
<attrlist>]

Syntax Diagram:

deflne text <textname> —_________ , label «label>

, Xorg < xlocation> —_________ , yorg < ylocation >

L_ , attribute < attriist > _l

Description:

Used to define text to be displayed in a window using the scaled
location coordinates of a draw command. A piece of text is
associated with attributes and a location in the window.

Arguments:

text name A string expression for the name of the
text to be defined.

label The text to be displayed.

xlocation A numeric expression for the horizontal
location (in scaled window coordinates)
of the upper left-hand comer of the text.

ylocation A numeric expression for the vertical

location (in scaled window coordinates)
of the upper left hand corner of the text.

define text-1

define text

attrlist "normal”, "blink", "bold", and
"inverse". Combinations are also
allowed, if separated by commas but
including no spaces.

If "normal” appears in the comma-

separated list, the attributes preceding

"normal” in attrlist are ignored.
Example:

! Create a label named Ul starting at

! location 10,10 to identify Ul as a 68000

! chip. Note that the text name and ref name
! do not need to be the same. It is done in
! this example for convenience.

define text "Ul", label "68000", xorg 10, yorg 10,
attribute "bold"

Remarks:

Text definitions are used by a draw command to draw labels in a
window on the monitor.

Once a TL/1 invocation has started, the text definitions are global
and remain in force until explicitly removed using the remove
command, or until TL/1 is restarted. TL/1 is restarted whenever
you press the REPEAT or EXEC keys on the operator's keypad,
by pressing the INIT softkey when in the debugger, or by
pressing the EXECUTE softkey when in the debugger if a
program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many definitions are to be
made (and the program is intended to be run indefinitely), it is
good practice to remove reference designator definitions using
the remove command. This practice will prevent memory from
being consumed by unused or obsolete definitions.

define text-2

define text

Related Commands:
draw, draw ref, open, remove

For More Information:

d "The Overview of TL/1" section of the Programmer's
Manual.

define text-3

define text

define text-4

delete
function

Syntax:

delete file <file name>

delete (<file name>)

Syntax Diagram:

delete_— . flle < file name >

Description:
Deletes a text file from the userdisk or from a UUT directory.
Arguments:
file name A string which specifies the path of the
text file to be deleted. If a full

pathname is not used, the text file will
be deleted from the current UUT

directory.
Example 1:
delete file "testl™ ! deletes a UUT text file
Example 2:
testdata = "/HDR/test"
delete testdata ! deletes a userdisk text file
Remarks:

The delete command performs the same function as the
REMOVE softkey in the editor, with the exception that the delete
command removes only files of the type TEXT.

delete-1

delete

Related Commands:

open, print

For More Information:

d The "Overview of TL/1" section of the Programmer's
Manual.

delete-2

diagnoseram
function

=)

Syntax:

diagnoseram addr <addr>, upto <upto>, mask <mask>,
fault_addr <faultaddr>, data_expected
<expdata>, data <data>

diagnoseram (<addr>, <upto>, <mask>, <faultaddr>,
<expdata>, <data>

Syntax Diagram:

dlagnoseram __ addr <addr> — , upto <uplo> —_ , mask <mask> — ...

, fault_addr < faultaddr >

, data_expected < expdata > , data < dala>

Description:

Used with your customized RAM tests or with Pod Quick Tests
to provide diagnostics and fault conditions which are consistent
with those of the testramfast and testramfull RAM tests.

Arguments:
addr Starting address.
upto Ending address.
mask Bit mask for data bits to test.
faultaddr Address of detected fault.
expdata Data expected from fault address.
data Data actually read from fault address.

diagnoseram-1

diagnoseram

Example:

diagnoseram addr 0, upto $FFFE, mask $7F,
fault_addr $10DA, data_expected $AA, data SAS8

Remarks:

The diagnoseram command is an aid for using Pod Quick tests,
or for using customer-designed tests such as a downloaded
RUN UUT test. The diagnoseram command supplies the same
9100A/9105A diagnostics and fault conditions that would result
from the testramfast and testramfull commands.

Related Commands:
pretestram, testramfast, testramfull

For More Information:

o The "Overview of TL/1" section of the Programmer’s
Manual .

diagnoseram-2

diagnoserom
function

Syntax:

diagnoserom addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep>

diagnoserom (<addr>, <upto>, <mask>, <addrstep>)

Syntax Diagram:

dlagnoserom ___ addr <addr> , upto <uplo>

L_. mask<mask>__l

, addrstep < addrstep>

Description:

Used with your customized ROM tests or with Pod Quick Tests
to preform data and address diagnostics on a range of ROM. The
diagnostics and fault conditions are consistent with those of the

testromfull ROM test.
Arguments:
addr Starting address.
upto Ending address.
mask Bit mask of valid data bits.
(Default = $FFFFFFFF)
addrstep Address increment.
Example 1:

diagnoserom addr $E000, upto S$EFFF, mask S$FOFO,
addrstep 2

diagnoserom-1

diagnoserom

Example 2: | ‘

diagnoserom addr adstart, upto (adstart + $OFFF),
addrstep 1

Remarks:

The diagnoserom command is similar to testromfull in
functionality and results. The major difference is testromfull
performs both a test of the ROM (by comparing the ROM
signature with an expected signature), and diagnostics if the
signatures do not match. The diagnoserom command does not
test the ROM (so it does not require a valid ROM signature) and
goes right into the diagnostics.

Another difference with diagnoserom is it tests for address line
faults first, while testromfull tests for data line faults first. If
there are both address faults and data faults, the two tests will
report different results.

The diagnoserom command is intended for use with your
customized ROM tests, or when a Pod Quick Test indicates that
the ROM signature is incorrect.

Related Commands:
testromfull

For More Information:

1 The "Overview of TL/1" section of the Programmer'’s
Manual .

diagnoserom-2

draw
special function
Syntax:

draw channel <channel expression> [, xoff <xoffset>
[, yoff <yoffset>]

Syntax Diagram:

draw ___ channel <« channel expression >

I_, xoff < xoffset > __J L_ , yoff < yoffset > __l

Description:

Draws all of the previously defined UUT components and then
all of the defined text on a window in the monitor.

Arguments:

channel expression A numeric expression for a channel
opened to write on the desired window.
Remember that /terml and /term2 are
also considered windows.

xoffset A numeric expression to define the
horizontal offset used when drawing
the ref and text. This value is subtracted
from the value of xorg defined by the
define ref and define text commands.

yoffset A numeric expression to define the
vertical offset used when drawing the
ref and text. This value is subtracted
from the value of yorg defined by the
define ref and define text commands.

draw-1

draw

Example:

draw channel ch3

! Display all defined UUT components and all
! defined text on the window opened for
! writing through a channel named ch3.

Related Commands:

define mode, define part, define ref, define text, open

For More Information:

i The "Overview of TL/1" section of the Programmer’s

Manual.

draw-2

Syntax:

draw ref
special function

draw ref <list of refs>, channel <channel

expression>,
<yoffset>]

Syntax Diagram:

draw ref < /istof refs >

[, x0ff <xoffset>] [, yoff

, channel < channel expression >

L. , Xoff < xoffset > _I I_ , yoff < yoffset > _J

Description:

Draw previously defined UUT components on a window in the
monitor. This command can also be used to change the display
mode of a component or list of components.

Arguments:

list of refs

channel expression

A list of reference designators defined
by define ref commands. When more
than one reference designator is
included in the list, the reference
designators are separated by commas
(but no spaces are used). If this
argument is an empty string, all defined
refs are drawn.

A numeric expression to define a
channel opened to write on the desired
window. Remember that /terml and
/term2 are also considered windows.

draw ref-1

draw ref

xoffset A numeric expression to define the
horizontal offset used when drawing
the ref. This value is subtracted from
the value of xorg defined by the define
ref command.

yoffset A numeric expression to define the
vertical offset used when drawing the
ref. This value is subtracted from the
value of yorg defined by the define ref
command.

Example:

draw ref "U3,U5,022,U1", channel ch2
! Display the specified group of UUT
! components on a window written to by a
! channel named ch2

Related Commands:

define mode, define part, define ref, draw, open

For More Information:

A “The Overview of TL/1" section of the Programmer’s
Manual.

draw ref-2

Syntax:

draw text
special function

draw text <text name list>, channel <channel

expression> [,
<yoffset>]

Syntax Diagram:

draw text < tfoxt name list >

xoff <xoffset>] [, yoff

, channel < channel expression >

l._ , Xoff < xoffset > .J l_ , Xoff < yoffset > _J

Description:

Displays the text at the scaled location indicated.

Arguments:

text name list

channel expression

xoffset

A list of text names created by define
text commands. When more than one
text name is included in the list, the
names are separated with commas, but
no spaces are used. If this argument is
the null string (""), all defined text is
shown.

A numeric expression to define a
channel opened to write on the desired
window. Remember that /terml and
/term?2 are also considered windows.

A numeric expression to define the
horizontal offset used when drawing
the text. This value is subtracted from
the value of xorg defined by the define
text command.

draw text-1

draw text

yoffset A numeric expression to define the
vertical offset used when drawing the
text. This value is subtracted from the
value of yorg defined by the define text
command.

Example 1:

draw text "labl,lab2", channel chanl
! draw only labl and lab2 on a window opened
! for writing through a channel named chanl

Example 2:

draw text "', channel chanl
! draw all defined text on a window opened
! for writing through a channel named chanl

Related Commands:
define text, draw, open

For More Information:

d The "Overview of TL/1" section of the Programmer's
Manual.

draw text-2

edge

function

® |

Syntax:

edge [device <device list>] [, start <start edge>]
[, stop <stop condition>] [, clock <clock
edge>])

edge (<device list>, <start edge>, <stop
condition>, <clock edge>)

edge ()

Syntax Diagram:

()

edge __.’_ device « device list >

start <startedge > |
|- stop < stop condition > _]

| clock < clock edge > ..
-4 ’ -4

Description:

Specifies the active edge of the external START, STOP, and
CLOCK lines for the probe or an I/O module. Allowable edges

are rising ("+") or falling ("-"); "count" is also allowed for the
stop condition.

Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe™)
start edge I/O module external start edge "+", "-",

or "at_arm".
(Default = "+")

edge-1

edge

* Probe external start edge "+" or "-".
(Default = "+") '
stop condition External stop edge "+" or "-", or

"count" condition (value determined by
the TL/1 stopcount function).
(Default = "+")

clock edge External clock edge "+" or "-".
(Default = "+")

Example:

mod = clip ref "u54", pins 16
edge device mod, start "+", stop "~", clock "+"

Related Commands:
arm, readout, stopcount

For More Information:

® The "Overview of TL/1" section of the Programmer’s .
Manual.

edge-2

edisk

| special function
‘ {EEE-LBA

Syntax:
edisk load <uut name> [, vectorload <vector mode>]
[, programload <program mode>]
[, objprogload <objprog mode>] [, size <kbytes>]
edisk delete

Syntax Diagram:

edisk load < uut name >
‘I: L , vactorload < vector mode > J I_ , programload < program mode > J
delete

L , ob]jprogload « objprog mode > J L , 8128 < kbytes > J

Description:

‘ Creates or deletes the E-disk, a temporary RAM cache. TL/1
programs and TL/1 compiled programs are optionally loaded
into the E-disk to increase their execution speed. The load
operation loads all the GFI database and optionally, the test
vectors (VECTOR), the compiled programs (OBJPROG), and
the source programs (PROGRAM), in the specified UUT
directory into the E-disk. If a pod is specified by SETUP POD
NAME, all the TL/1 programs in the specified POD directory are

also loaded.
Arguments:
uut name A string which specifies the path of the
UUT to be loaded. If a full path is not
used, the UUT is loaded from the
current user disk.
vector mode "ON" - test vectors are to be loaded.

"OFF" - test vectors are not to be
loaded. (Default = "OFF")

edisk-1

edisk

program mode "ON" - programs (PROGRAM) are to
be loaded. ‘
"OFF" - programs are not to be loaded.
(Default = "ON")

objprog mode "ON" - compiled programs (OBJPROG)

are to be loaded.

"OFF" - compiled programs are not to
be loaded.

(Default = "ON")

kbytes Size of the E-disk in kilobytes.
(Default = S00K bytes)

Example 1:
create an E-~disk of size 1000 kbytes and
load it from user disk DR1l, uut DEMO,

]
!
! including the test vectors, PROGRAMs, and

! OBJPROGs

edisk load "/DR1/DEMO", vectorload "ON", size 1000 '

Example 2:

! create an E-disk of size 500 kbytes and load
! it from user disk HDR, uut TK80 without the
! test vectors, without PROGRAMs, but
! including OBJPROGs.
edisk load "/HDR/tk80", programload "OFF"

Example 3:

! delete the E-disk

edisk delete

edisk-2

edisk

Remarks:

To delete the E-disk, use the delete form of the E-disk function.
The E-disk is also automatically deleted when the EDIT key is
pressed on the 9100A. Either procedure releases the previously
allocated E-disk memory for use with other operations.

To create the E-disk, you must ascertain that sufficient memory
is available in RAM. Once the E-disk is created, you may also
have to adjust RAM allocations so that there is enough left for
other functions. Insufficient RAM before and after the creation
of the E-disk results in error messages. Adjustments to RAM to
create a balance of available memory are made with the kbytes
argument.

To adjust the size of the E-disk, reduce the number of kbytes
until an error message no longer occurs. Another way to make
memory available is to turn off VECTORs, PROGRAMSs, or
OBJPROG:S.

If an E-disk currently exists when this statement is issued, one
of the following occurs:

¢ If the UUT directory name of the current E-disk does not
match the specified UUT directory name, the original files
are deleted and the new files loaded.

¢ If the UUT directory name of the current E-disk matches
the newly specified UUT directory, a merge copy takes
place.

edisk-3

edisk

edisk-4

enable
function

{EEE-L88
Syntax:
enable [device <device 1list>] [, mode <mode name>]

enable (<device list>, <mode name>)

enable ()

Syntax Diagram:

)
enable __I__ device « device list >

L. mode < mode name > _|
b f——— ; ————

Description:

Sets the enable mode of the response gathering hardware for the
probe or an I/O module. Used only when the sync mode is

"ext".
Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")
mode name I/O module enable modes: "always",
llhighll’ lllowll’ OI' Ilpodll.
Probe enable modes: "always", "high",
Illowll’ Hpodll’ Ilpod*enoll’ llpod*enlll-
(Default = "always")
Example 1:

mod = clip ref "U22", pins 28
enable device mod, mode "high"

enable-1

enable

Example 2:

enable device "/probe", mode "pod"

Remarks:

The enable mode is one of the following:

"high" Enable condition is true when the external
enable line is high.
"low" Enable condition is true when the external

enable line is low.

"always" Enable condition is always true.
"pod" Enable condition is generated by the pod
sync pulse.

"pod*en0" Enable condition is generated by the pod
sync pulse ANDed with the enable signal.
The enable condition is true if the pod's
PodSync line is active and the clock module
enable line is low. This mode is valid only
for the probe.

"pod*enl” Enable condition is generated by the pod
sync pulse ANDed with the enable signal.
The enable condition is true if the pod's
PodSync line is active and the clock module
enable line is high. This mode is valid only
for the probe.

Related Commands:
arm, readout, sync

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

enable-2

end
statement

‘ Syntax:

end declare

end exercise

end <fault condition>
end function

end <function name>
end handle

end <fault condition>
end if

end loop

end program

end <program name>

Syntax Diagram:

end __ declare

exercise

_l: < fault oonm
function

_E < function name >]

handle

E < fault condition > j

foop

program

< program name > j

Description:
Defines the end of a block.
Arguments:

fault condition The fault condition used to call an
exerciser block or a handler block.

function name The function name used to call the
function block.

end-1

end

program name

Examples:

end declare

end if

end loop

end my exer

end my func

end my handl

end my prog

The program name used to call the
program block.

ends a variable declaration block

ends an if . . . then or an
if . . . then . . . else
block

ends a loop block

ends an exerciser block, where the
fault name given in the
exercise statement is my_exer

ends a function, where the function
name given in the function
statement is my func

ends a fault-handler block, where
the fault name

given in the handle statement

is my handl

ends a program, where the program
name given in the program statement
is my prog

Related Commands:

declare (block form), exercise, function, handle, if, loop,

program

For More Information:

end-2

o The "Overview of TL/1" section of the Programmer’s

Manual.

endif

statement
Syntax:

endif

Syntax Diagram:

endlf

Description:
Specifies the end of an if block.
Example:
if a < 4 then
b =

c
endif

Remarks:
In TL/1 endif is functionally equivalent to end if. This form of
the end if statement is provided for ANSI compatibility, but is
not the recommended TL/1 syntax.

Related Commands:
if, end

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

endif-1

endif

endif-2

Syntax:

execute
statement

[execute] <name> <argname> <argvalue> {, <argname>
<argvalue>}

[execute] <name> (<argvalue> {, <argvalue>})

[execute] <name> ()

Syntax Diagram:

E execute] | <argname > ___ < argvalue > _|

Description:

()

< name >

- -

- 4 -

Causes the named program or function to be executed. The
execute keyword is optional.

Arguments:
name
argname

argvalue

Example 1:

execute

Valid program or function name.
Name of an argument.

An expression which provides the value
for an argument.

Suppose you have written a function called
send which requires two arguments:

addr and data. This is an example of
calling send using keyword notation.

send addr a, data d

execute-1

execute

Example 2:

! This is equivalent to Example 1, but the
! argument list is written in positional
! notation.

execute send (a, d)
Example 3:

program test4
function f1 ! defines the function f1l
chl = open device "/term2", as "output"
print on chl "Executed function £f1"
close channel chl

end f1l
execute f1l () ! calls the function f1l
execute f1l () ! calls the function f1l

execute test3 () calls another program
since this name is not
defined as a function in

this program

end program
Remarks:

The argument list for the execute command has two forms:

¢ Keyword notation - where argument name and argument
value pairs are listed with each pair separated by commas.

execute-2

execute

¢ Positional notation - where only the argument values are
listed in order separated by commas. The order of
argument values must be the same as the order in the
program or function command called by the execure
command.

The value returned by a function may be used as the argument to
another function, as in the statement z = f(g(x),y). When the
functions use keyword notation, it may be difficult to interpret
the resulting statement. In the following invocation:

z = f f argl g g_argl x, arg2 y

it is not obvious whether arg2 belongs to g's argument list or f's
argument list. Therefore, when a function invocation using
keyword notation is an argument to another function, the
argument function invocation must be surrounded by
parentheses to remove ambiguity as shown in the following:

execute £ f_argl (g g_argl x), arg2 y

Related Commands:

function, program, return

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

execute-3

execute

execute-4

exercise
statement block

Syntax:

exercise <fault condition> [(<argname>
{, <argname>})]

Syntax Diagram:

exarclse < fauit condition >

L < argname > _I
T T

Description:

Specifies the beginning of a fault condition exerciser.

Arguments:
fault condition Name of the fault condition to be
exercised. (See Appendix G,
"Handling Built-in Fault Messages in
TL/1 Programs," in this manual.)
argname Name of an argument for this exerciser
block.
Example:

exercise my exerciser (a,b,c)

declare
numeric e, f
end declare

end my exerciser

exercise-1

exercise

Remarks:

A fault condition exerciser is a sequence of statements that
detects a particular, previously discovered fault condition.
When a fault condition occurs, an operator can execute the
exerciser continually (controlled through the operator's display)
while attempting to repair the UUT fault. A program or function
can provide exercisers for fault conditions that are raised during
execution.

You may write your own exercisers in TL/1 or use the built-in
exercisers provided by the built-in tests.

The fault name must be the same in both the exercise command
and the end command. A fault exerciser has the name of the
fault condition it is intended to exercise.

The argument list consists of argument names separated by
commas. If any arguments have default values, these values are
assigned in the declarations. The exercise command must
include all arguments named in the corresponding fault
command, but it can include additional arguments as well.

Unlike the scope of a variable name, which is static based upon
the block structure of a TL/1 program, the scope of an exerciser
is dynamic. The scope of an exerciser extends from the time at
which the containing block is entered until the containing block
is exited. If the block invokes another function, the exerciser
remains "active", unless another exerciser with the same name is
activated in the invoked block.

Variables declared inside an exerciser are local unless explicitly
declared to be global.

Any fault condition that is exercised causes the program to
indicate that the UUT fails if the last full iteration of the exerciser
detected a fault and allows the program to indicate a "passes" if
the last full iteration of the exerciser did not detect a fault.

exercise-2

exercise

. Related Commands:
declare, end, execute, fails, handle, passes, refault, return
For More Information:

The "Overview of TL/1" section of the Programmer’s Manual.

exercise-3

exercise

exercise-4

fabs

function
Syntax:
fabs num <expression>

fabs (<expression>)

Syntax Diagram:

fabs ____ num < expression >

Description:

Returns the absolute value (floating-point) of the argument
value.

Arguments:

expression The floating-point argument value.

Returns:

A floating-point value.

Examples:
f = fabs (f) f Convert f to its absolute
! value.
f = fabs num (sin angle f)

Remarks:

If fabs returns

<expression> 2 0.0 <expression>
<expression> < 0.0 - <expression>

fabs-1

fabs

fabs-2

fails

operator
Syntax:

<invocation> fails

Syntax Diagram:

< name > falls

Description:
Tests the termination status of a called program or function. The
fails operator evaluates as true if the called function or program
ends with a fail status and as false otherwise.
Arguments:
invocation Program or function call.
Example 1:
if testramfull ($1000, $1FFF,2) fails then x = 0
Example 2:
if testbus ($FFFF) fails then y = 0

Remarks:

Termination status indicates whether or not a UUT passes
functional tests. Termination status is revised for every invoked
program or function.

fails-1

fails

fails-2

Termination status can be:

passes represents completion of a test without any
unhandled fault conditions. The UUT is free
from any faults that the test can detect.

fails represents the existence of one or more
unrepaired faults at the end of test execution.

A program that runs to completion without detecting any faults
indicates that the UUT passes. Detection of a fault by the
program (or any programs it calls) affects the termination status
of the program. Any unhandled, unexercised fault condition
causes the program to indicate that the UUT fails. Any fault
condition that is exercised causes the program to indicate that the
UUT fails if the last full iteration of the exerciser detected a fault
and allows the program to indicate a "passes” if the last full
iteration of the exerciser did not detect a fault. The termination
status of a program is accumulated in the program that called it,
so that if any called programs indicated a failure, the calling
program also indicates that the UUT fails.

A fault condition can be handled by a block of statements called
a fault condition handler. The fault condition handler has access
to the arguments of the fault and the global variables of the test
program. When a fault condition handler encounters either a
return statement or its last statement the handler terminates, and
execution resumes at the statement following the fault command.

If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the termi-
nation status is "passes".

A fault command with no fault name or arguments
unconditionally sets the termination status to "fails."

When a refault or a fault command with a fault name is executed,
the termination status is affected by the presence of other
handlers or exercisers for the fault condition.

fails

Related Commands:
execute, exercise, fault, handle, if, passes, refault, while

For More Information:

A The "Overview of TL/1" section of the Programmer’s
Manual.

fails-3

fails

fails-4

fault
statement
Syntax:

fault [<fault condition> <argname> <argvalue>
{, <argname> <argvalue>}]

Syntax Diagram:

fault

L «< fault condition >

| <argname > ___ < argvalue >

>y b

3 ’ @

Description:

Raises a fault condition and provides a list of arguments that
describe details of the fault condition.

Arguments:
fault condition Name of the fault condition to be
raised.
argname Name of an argument.
argvalue An expression which provides the value

for an argument.

Example 1:

if errors > 10 then fault ! termination status
! is set to "fails"

Example 2:

fault pod data_tied mask mask, access_attempted
"write"™, addr adr2, data d

fault-1

fault

Remarks:

fault-2

A fault condition occurs during execution when the UUT does
not respond as expected. When faulty UUT behavior is detected
by a test program, a fault condition describing the behavior is
raised with a fault command. The fault command consists of a
fault name and a list of arguments that describe details of the
fault condition.

When a fault command is executed, program execution is
suspended. If the current invocation contains a handler for the
raised fault condition, the handler is executed. If the current
invocation does not contain a handler for the raised fault
condition, each invocation in the calling chain is checked until a
handler is found. If no invocation has a handler for the raised
fault condition, the system issues the fault message on the
operator's display.

A program that runs to completion without detecting any faults
indicates that the UUT passes. Detection of a fault by the
program (or any programs it calls) affects the termination status
of the program. Any unhandled, unexercised fault condition
causes the program to indicate that the UUT fails. Any fault
condition that is exercised causes the program to indicate that the
UUT fails if the last full iteration of the exerciser detected a fault
and allows the program to indicate a "passes” if the last full
iteration of the exerciser did not detect a fault. The termination
status of a program is accumulated in the program that called it,
so that if any called programs indicated a failure, the calling
program also indicates that the UUT fails.

A fault condition can be handled by a block of statements called
a fault condition handler. The fault condition handler has access
to the arguments of the fault and the global variables of the test
program. When a fault condition handler encounters either a
return statement or its last statement the handler terminates, and
execution resumes at the statement following the fault command.

If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the termi-
nation status is "passes".

fault

A fault command with no fault name or arguments
unconditionally sets the termination status to "fails."

When a refault or a fault command with a fault name is executed,

the termination status is affected by the presence of other
handlers or exercisers for the fault condition.

Related Commands:
execute, exercise, fault, handle, if, passes, refault, while

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

¢ Appendix H, "Raising Built-in Fault Messages in TL/1
Programs," in this manual.

fault-3

fault

fault-4

filestat
function

=)

Syntax:
filestat file <file name string>
filestat (<file name string>)

Syntax Diagram:

filestat flle < file name string >

Description:

Returns information about the existence, readability, and
writeability of a text file.

Arguments:

file A string containing a relative or
absolute file path name.

Returns:

A three character string if the file exists, or the empty string if
the file does not exist.

The first character of the string is "r" if the file is readable and
"-" otherwise.

The second character of the string is "w" if the file is writable
and is "-" otherwise.

The third character of the string is "-".

filestat-1

filestat

Example:

print "DEMO--", filestat ("DEMO")

The example prints "DEMO--rw-" if the text file DEMO in the
current UUT exists and is not write protected.

Remarks:

Filestat returns information about the status of the file. It cannot
tell if a floppy disk write-protect tab is in the protected position.

Related Commands:
cwd, open, close

For More Information:

® The "Overview of TL/1" section of the Programmer'’s
Manual.

filestat-2

‘ Syntax:

for <variable>

for
statement block

<expression 1> to <expression 2>

[step <expression 3>]

Syntax Diagram:

for . < variable > = < expression 1 > to < expression 2 >

I_ step < expression 3 > J

Description:

Executes a series of statements repeatedly for each value of a
control variable within a specified range.

‘ Arguments:

variable

expression 1
expression 2

expression 3

Any numeric variable; used as an index.

An integer expression for the lowest
value in the range.

An integer expression for the highest
value in the range.

An integer expression which specifies

the increment after each loop iteration.
(Default=1)

tor-1

for

Example:

for n =1 to 5 step 2

! if n is 5 or less, perform
! the statements within the
! "for"™ block. Since the

! "step" variable is 2, the
! statements within the

! block are executed three

! times.

next

Remarks:

The for . . . next block repeats the controlled statements for each
value of an index variable within a specified range, after which
execution continues at the line following the end of the block.
The for . . . next block ends with a next statement.

The optional step expression indicates how much to add to the
block control variable after each iteration of the block.

The for . . . next block is provided for ANSI compatibility, but
the recommended TL/1 structure is the loop for . . . end loop
block.

Related Commands:
loop, next

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

for-2

fstr
function

Syntax:
fstr num <expression>

fstr (<expression>)

Syntax Diagram:

fstr _______ num < expression >

Description:

Produces a string representation of the floating argument value.
Arguments:

expression A floating-point argument value.
Returns:

The default string representation of the floating argument value.

Examples:

s = "The answer is"™ + fstr (f)
s = fstr num £

Remarks:

The returned string is in scientific format, with six digits of
precision following the decimal point. For example, the
following are strings produced by the fstr command:

1.110000E+02
9.900000E+101
-3.240000E-03

fstr-1

fstr

Related Commands:

fval

fstr-2

function

statement block
Syntax:

function <function name> [(<argname>
{, <argname>})]

Syntax Diagram:

tunction < function name >

[_ < argname > _]
T T

Description:

Specifies the beginning of a function definition block.

Arguments:
function name Name of the function that is defined in
the lines between the function and end
statements.
argname Name of an argument for this function.
Example:

program test4
function max (x,y)
! Defines a function called max
! Suppose you wrote this function to take two
! numeric values as input and return the
! greater value (or the second value if they
1

are equal).

(example is continued on the next page)

function-1

function

declare
numeric x
numeric y
end declare
if (x>y) then
return x

else
return y
end if
end max
a = max (16, datawidth) ! calls the function max

! defined at the beginning
. ! of the program
end program

Remarks:

A function is a sequence of TL/1 statements called by a single
name. A function is syntactically identical to a program except
that it begins with a function statement rather than a program
statement.

The only difference between the program and function definition
block is that the scope of a function name extends only within
the block (usually a program block) that encloses it. The scope
of a program name is every program in the same UUT and every
program in the program library.

The function name used in the function statement, the end
statement, and all invocations of the function must be the same.
Function names are case-sensitive; "add" is not the same as
"aDd." A function name cannot be the same as the name of a
built-in function.

The argument list consists of one or more argument names
separated by commas. The list is enclosed in parentheses. The
order of the names in this list is the same order in which the
values for these arguments must be listed in positional notation
calls to this function. If any arguments have default values,
these values are assigned in the subsequent declaration blocks.

function-2

function

Function arguments may not be declared as arrays, nor as global
or persistent variables.

Function definition blocks may contain any or all of the
following: declaration blocks, handler definition blocks, and
exerciser definition blocks.

Related Commands:

declare, end, execute, exercise, handle, program, return

For More Information:

M The "Overview of TL/1" section of the Programmer's
Manual.

function-3

function

function-4

Syntax:

fval str <expression>

fval

(<expression>)

Syntax Diagram:

fval

Description:

str < expression >

fval
function

Calculates the floating-point value of the string argument.

Argument:

expression

Returns:

A valid string expression which
represents a floating-point number.

The floating-point value obtained by interpreting the string.

fval ("1.0™)

fval str "-3E2"

Examples:
f =
f =
f = fval

("2"

)

f is

f is

-300.

f is
Note

set to the value 1.0

set to the value

0

set to the value 2.0
that a decimal point

is not necessary here.

fval-1

fval

Remarks:
Any string which can be interpreted as a decimal floating-point
number is acceptable. Decimal points are not required. In
addition, the first character of the string can be a minus sign,
indicating that the number is negative.

Related Commands:

[str, isflt

fval-2

getoffset
function

Syntax:

getoffset [device <device name>] [, pin
<pin number>]

getoffset (<device name>, <pin number>)

getoffset ()

Syntax Diagram:

()

getoffset _l__ devlce <« device name >]

L pln < pin number >

- >y
- ’ -

Description:

Returns the current calibration delay offset for the specified
device. The value returned is biased by 1000000 (decimal).
This value can be changed via calibration, restoring caldata, or
using the setoffset command. Each sync mode (such as pod
addr, pod data, or ext) has a separate offset associated with it.
Thus, changing sync modes also changes the offset.

Arguments:
device name I/O module name or probe name.
(Default = "/probe")
pin number (Default = 1)
Returns:

The current calibration delay offset for the specified device.

getoffset-1

getoffset

Example 1:

! This example looks at the current offset for
! external sync in the probe

sync device "/probe", mode "ext"
offset = getoffset device "/probe"

Example 2:

! This example looks at the current offset for
! pod address sync in I/0 module 2

sync device "/mod2", mode "pod"
sync device "/pod", mode "addr"
offset = getoffset device "/mod2"

Remarks:

The getoffser command is valid only when the sync mode is
Ilpodll or "ext".

The value returned is biased by 1000000 (decimal). This means
that a returned value of 1000000 represents an offset of 0
nanoseconds, a returned value of 1000020 represents an offset
of 20 nanoseconds, and a returned value of 999970 represents
an offset of -30 nanoseconds.

The offset value can be changed by calibration, by restoring
caldata, or by using the setoffset command. In addition, each
sync mode (such as pod addr, pod data, or ext) has a separate
offset associated with it. Thus, changing sync modes also
changes the offset.

The getoffset function will not necessarily return exactly the

same value that setoffset passed. This is because the hardware
delay line provides delay increments of about 15 nanoseconds.

getoffset-2

getoffset

‘ Related Commands:
setoffset

For More Information:

g The "Overview of TL/1" section of the Programmer’s
Manual.

g The "Offset Command"” section of the Programmer’s
Manual for information on using offsets with GFIL.

getoffset-3

getofiset

getofiset-4

getpod

function
{EEE-LAG

Syntax:
getpod podname

Syntax Diagram:

getpod podname

Description:

Returns information about the current pod.

Arguments:
podname Return the name of the currently
connected pod.
Returns:

The name of the current pod.

Example:
if instr ((getpod podname), "M") = 1 then
print "9132A pod in use"
end if
Remarks:

There is a current pod name (called "32BIT") when no pod is
plugged in. 9132A pod names all begin with "M", so getpod is
useful to determine the type of pod.

Related Commands:

podinfo, podsetup

getpod-1

getpod

For More Information: ‘

d The "Overview of TL/1" section of the Programmer's
Manual.

getpod-2

getromsig
function

Syntax:

getromsig addr <address 1>, upto <address 2>
[, mask <mask>], addrstep <addrstep>

getromsig (<address 1>, <address 2>, <mask>,
addrstep>)

Syntax Diagram:

getromslg addr < address 1> , upto <address2>

, addrstep < addrstep >

L , mask < mask> _J

Description:

Returns the signature gathered from one or more ROMs using a
mask to select which data bits will be used to form the signature.

Arguments:
address 1 Starting address.
address 2 Ending address.
mask Bit mask of data bits to be used to form
the signature.
(Default = $FFFFFFFF)
addrstep Address increment.
Returns:

The signature measured.

getromsig-1

getromsig

Example 1:

measured sig
addrstep 2

getromsig addr 0, upto $7FF,

Example 2:

measured sig getromsig (first,last,$7C,4)

Remarks:

The ROM signature is a CRC word calculated from the data
contained in the ROM. The ROM data is considered to be
composed of bit streams consisting of data bit ¥ of addresses
(addr, addr + addrstep, addr + 2*addrstep; addr + 3*addrestep,
etc.). These bit streams are concatenated with the most
significant set bit in mask first, followed by less significant set
bits, with the CRC result being taken from the concatenated bit
stream. Therefore, if mask has only one set bit, the CRC
returned by getromsig is the same as the signature that would be
returned if the probe were placed on the same data bit, and reads
were done at addresses (addr, addr + addrstep, addr +
2*addrstep, addr + 3*addrstep etc.).

Related Commands:
testromfull

For More Information:

. The "Overview of TL/1" section of the Programmer’s
Manual.

b Supplemental Pod Information for 9100A/9105A Users
Manual.

¢ The Fluke pod manual for the microprocessor you are
using.

getromsig-2

getspace
function

=

Syntax:

getspace <argname> <argvalue> { <argname>
<argvalue>}

getspace (<argvalue> {, <argvalue>})

Syntax Diagram:

getspace < argname > —_ < argvalue >

| Y -
< ’

-

Description:

Converts a list of specified address parameter values to a number
suitable as an argument for the setspace command. This number
depends on the specified parameter values and on the pod which
is currently connected.

Arguments:

argname Address parameter name (refer to the
Supplemental Pod Information for
9100A/9105A Users Manual for the
MiCroprocessor you are using).

argvalue The address parameter string value you
select (refer to Supplemental Pod
Information for 9100A/9105A Users
Manual for the microprocessor you are
using).
Returns:

The selected address space as a number.

getspace-1

getspace

Example:

program testb6
s = getspace space "memory", size "word"
! an 80286 address space
setspace space s

end program
Remarks:

Microprocessor address lines usually have multiple addressing
modes. These are often referred to as address spaces. For
example, in the Z80 microprocessor, two address spaces are
available: memory space and I/O space. More powerful
microprocessors have a correspondingly larger number of
address spaces that can be used. When testing a
microprocessor-based UUT, you must select an address space
and any other addressing parameters that are needed to test the
UUT in the desired address space.

The 9100A/9105A provides a convenient means to select the
address space and other addressing parameters. When a pod is
connected to the 9100A/9105A and the power is turned on (or
the RESET key is pressed), the addressing parameters possible
for this pod are made available to the 9100A/9105A in the form
of a list of strings representing all legal combinations of
addressing options. These options are shown on the operator's
display when appropriate commands are selected from the
operator's keypad.

These options are also selectable by TL/1 through the use of the
getspace function used along with the setspace command. With
the getspace function, you specify both a name and a selected
string value for each address parameter. No parameters may be
left out. The getspace function then checks the list of address
parameter combinations and returns a number related to the
position in the list where the specified combination was found.
The Supplemental Pod Information for 9100A/9105A Users
Manual shows the appropriate parameter names and all legal
combinations of parameter values that can be used for each
supported microprocessor.

getspace-2

getspace

For example, when you refer to The Supplemental Pod
Information for 9100A/9105A Users Manual, you would find
the information on the 80186 microprocessor to write the
following getspace command. (A summary of this information
for the 80186 microprocessor is also shown in Appendix I of
this manual.)

s = getspace mode "normal", space "memory", size
"word"

This command would request the number of the address
parameter string which has "normal" as the choice for the mode
parameter, "memory" as the choice for the space parameter, and
"word" as the choice for the size parameter.

The number returned by getspace is then used with the setspace
command to set the pod to operate with the requested addressing
parameters. For example, you might use the following
command to set the pod to use the number returned by the
getspace command above:

setspace space s

Related Commands:

setspace, sysspace

For More Information:

g The "Overview of TL/1" section of the Programmer'’s
Manual.

® Appendix I, "Pod-Related Information," in this manual.

® The Supplemental Pod Information for 9100A/9105A
Users Manual.

® The Fluke pod manual for the microprocessor you are
using.

getspace-3

getspace

getspace-4

Syntax:

gfi
gfi
gfi
gfi
gfi
gfi
gfi
gfi
gfi
gfi
gfi
gfi
gfi
gfi

ofi

special function

accuse

autostart <autostart mode>

clear

control

device

fail <refpin name>

fail <ref name>

hint <refpin name>

pass <refpin name>

pass <ref name>

ref

status <refpin name>
suggest

test <refpin name> [, autoprompt <autoprompt
state>]

Syntax Diagram:

gfi

accuse

|_ autostart < autostart mode >
| _ clear
|__ control
|__ device
L fail < refpin name >

< ref name >
|__ hint < refpin name >

|_. pass < refpin name >

t<relname> __.]
| __ ref

| status __ < refpin name >
| suggest
| test

< refpin name >

I_ , autoprompt < auloprompt state > _J

Description:

The gfi commands allow TL/1 to interact with the resident GFI
software. The gfi status and gfi test commands can be used as
the heart of functional testing using the probe and I/O module.
Using these commands to perform functional tests has the
advantage of using the learned responses (response files) which
characterize the known-good UUT rather than including
response information in TL/1 functional test programs.

gfi-1

gfi

Options:

gfi-2

accuse

autostart

clear

(Has no argument value.)

This option returns a string that
describes the current GFI accusation, or
conclusion ("Ul is BAD or OUTPUT
U1-24 is LOADED", for example). If
GFI currently has no accusations, an
empty string is returned.

<autostart mode>

This option enables or disables an
automatic transition from a TL/1
functional test to GFI.

The autostart mode can be "enable” or
"disable". If the mode is "enable", GFI
automatically starts after a TL/1
program that generates GFI hints has
finished running. If the mode is
"disable”, a message is displayed
informing the operator that GFI hints
are available.

(Has no argument value.)

This option erases the GFI summary
and GFI suggestion list. It also forces
the UUT's GFI database out of
memory. An empty string is returned.
An error will be reported if a stimulus
program attempts to clear GFI. This
command should be executed before
troubleshooting of a new UUT is
begun.

gfi

control

device

fail

(Has no argument value.)

This option determines whether the
program is being executed under GFI
control. A value of "yes" or "no" is
returned.

(Has no argument value.)

This option returns a string containing
the name of the measurement device
("/probe”, "/mod1", "/mod2", "/mod3",
"/mod4", etc.) that is being used.
Typically, the device list returned is
passed to other TL/1 functions which
accept device lists and affect the I/O
module and probe.

This option is used only in stimulus
programs, which are executed under
control of the GFI program. If the
program is not being executed under
GFI control, an error is reported.

<refpin name>

This option is used in a GFI stimulus
program to force GFI to fail the
specified pin, independent of the actual
measured response.

The FAIL applies only to the single
program that this statement appears in.

The specified pin must be a pin that is
currently being tested by GFI. The
name of the current pin or ref being
tested can be obtained using the 'gfi ref’
option.

ofi-3

gfi

afi-4

hint

pass

<ref name>

If a reference designator name is
specified, it will force GFI to fail all the
pins on that ref that are tested by the
stimulus program.

<refpin name>

This option adds the specified pin name
to the end of the GFI suggestion list.
This option is used in functional tests to
identify nodes that are suspected to be
faulty.

<refpin name>

This option is used in a GFI stimulus
program to force GFI to pass the
specified pin, independent of the actual
measured response.

The PASS applies only to the single
program that this statement appears in.
(If a pin is tested by several stimulus
programs, the cumulative status of the
pin can still be BAD if the pin fails one
or more of those other programs).

The specified pin must be a pin that is
currently being tested by GFI. The
name of the current pin or ref being
tested can be obtained using the 'gfi ref'
option.

<ref name>

If a reference designator name is
specified, it will force GFI to pass all
the pins on that ref that are tested by the
stimulus program.

gfi

ref

status

suggest

test

(Has no argument value.)

This option returns a string containing
the name of the reference designator or
pin that is being tested by GFI.

This option is used only in stimulus
programs, which are executed under
control of the GFI program. If the
program is not being executed under
GFI control, an error is reported.

<refpin name>

This options returns a string describing
the status of the named pin. It returns:
"good" if the pin has been tested and
was good, "bad" if the pin has been
tested and was bad, and "untested" if
the pin has not been tested or no such
pin exists.

(Has no argument value.)

This option returns a string containing
the first (highest priority) suggestion on
the GFI suggestion list. The string has
the form "ref-pin". If the suggestion
list is empty, an empty string is
returned.

<refpin name>, [autoprompt
<autoprompt state>]

This option tests the named pin by
executing all stimulus programs
associated with it. If the named pin is
tested with the I/O module, GFI will
test all the pins on the component.

gfi-5

The TL/1 "passes" or "fails" condition
will be set according to the status of the
component (not just the named pin). It
will be set to "fails" if any pin on the
component is bad. It will be set to
"passes” if all the pins on the
component are good or untested.

The autoprompt state can be "yes" or
"no". (Default = "yes".) Ifitis "yes",
then the necessary operator prompts to
clip or probe the component will be
automatically generated. If it is "no",
the system assumes that the
programmer has dlready prompted the
operator. Prompting for the I/O module
must be done with the TL/1 clip
command. This function updates the
system connection data for the module,
which is used by GFI.

This option cannot be used in a GFI
stimulus program.

Example 1:

! This program performs the equivalent of RUN GFI

! from the operator's keypad and display. The only
! difference is that no graphics will be generated
! for the part.

program auto gfi
loop while (((gfi accuse) = "") and
((gfi suggest) <> ""))
pin = gfi suggest
gfi test pin
end loop
end auto_gfi

gfi-6

Example 2:

gfi autostart "enable"

gfi hint "U25-15"
! enable autostart and add U25-15 to the GFI
! suggestion list

Example 3:

! test all pins on Ul(if Ul is tested with
! the I/0 module)
if gfi test "Ul-1" passes then
print "Ul is good”
else
print "Ul is bad"
print "Ul-1 is ", (gfi status "Ul-1")
print "Ul-2 is ", (gfi status "U1-2")
print "Ul1l-3 is ", (gfi status "U1l-3")

end if

Example 4:

! This stimulus routine wiggles the data pins out
! to the inputs of all components directly
! connected to the microprocessor bus buffer.

program micro data

! If testing with GFI then
! get device name from GFI
! else not testing with GFI
! so specify device name
if (gfi control) = "yes"™ then
devlist = gfi device
else
devlist = "/modl™
end if

gfi-7

! Setup measurement and
! stimulus devices.
X = getspace space "memory", size "word"
setspace (x)
! Reset device to known state
! then configure devices as desired
reset device devlist
sync device devlist, mode "pod"
sync device "/pod", mode "data"
threshold device devlist, mode "ttl"
counter device devlist, mode "transition"
arm device devlist ! Begin measurement
! Perform stimulus to UUT
rampdata addr $20000, data 0,mask $1F
rampdata addr $20000, data 0,mask $1F0
rampdata addr $20000, data 0,mask $1F00
rampdata addr $20000, data O,mask $1F000
readout device devlist ! End measurement

end micro_data

Remarks:

gfi-8

The gfi accuse, gfi suggest, and gfi test commands can be
combined to perform the equivalent RUN GFI from the
operator's keypad and display (see example 1). You can also
drive an autoprober by modifying example 1; position the
autoprober before performing the gfi test command.

The gfi test and gfi status commands can be used as the heart of
functional testing. Once the UUT has been divided into
sections, functional test programs can be written for each
section. These functional tests can use the gfi test command to
test the components generating output signals for each section.

For example, assume a section has two ICs, U21 and U33, that
provide the output signals for that section. In this case, gfi test
"U21-1" and gfi test "U33-1" can be used to test these two
components and therefore, the output of the section. (There is
an additional assumption that the I/O module is being used to test

gfi

U21 and U33. When the I/O module is used, gfi test will test all
pins on the IC, not just the specified pin.) If one or more of the
gfi test commands fails, the gfi status command can be used to
find out which pins on the components failed. The failing pins
can be entered in the suggestion list using the gfi hint command.

Stimulus programs can be executed from the operator's keypad
and display, from the debugger, and from GFI. The gfi control
command and gfi device command are used to identify when
GFI is running, and if it is, to get the testing device from GFI
(see example 4).

Refer to the Programmer’s Manual for a description of the GFI
program and information on how to create a UUT database for
GFI.

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

A The "Guided Fault Isolation (GFI)" section of the
Programmer's Manual.

gfi-9

gfi

gfi-10

goto
statement
Syntax:

goto <label>

Syntax Diagram:

goto ___________ «<label >

Description:

Causes program execution to jump to the beginning of the line
labeled by <label>.

The goto command should be avoided where possible (see the
Remarks section for this command).

Arguments:
label A statement label which exists in the
program. A label is always followed
by a colon (":").
Example:

program test?

if y <> 24 then goto finish ! skips the lines
from here to

!
a=a-+1 ! the label
b=Db+ 1 ! finish unless y
c=c+1 ! is equal to
finish: ! decimal 24

end program

goto-1

goto

Remarks:

aoto-2

Normal execution of statements in a program proceeds in order
from one statement to the following statement. But the goto
command causes program execution to jump to the line with the
specified label.

In the preceding example, if y is not equal to 24, the statements
between the if command and the label "finish" are not executed;
the goto command transfers program execution to the line
beginning with the finish label.

No more than one line can be labelled with a particular name.
Labels must meet the requirements for variable names as
outlined in Section 2 of this manual, "Name Conventions." A
colon separates the label from the rest of the line, but is not part
of the label name.

The goto command should be avoided where possible; it is
provided as a last-choice alternative to other control statements.
A more orderly and logical flow of instructions can be achieved
by using loop . . . end loop blocks and if . . . end if blocks.

Several restrictions and caveats apply to the goto command:

® The label specified by a goto command must mark an
executable command line somewhere in the current
definition block (program, function, handler, or exerciser).
A goto command cannot jump from one definition block to

another or from a program into an enclosed definition
block.

A goto command cannot jump to a line contained in a
loop for ... end loop block.

® A goto command cannot jump out of a loop for .. .end
loop block.

goto

. Related Commands:

if, loop

For More Information:

i The "Overview of TL/1" section of the Programmer's
Manual.

goto-3

goto

goto-4

haltuut
function

Syntax:
haltuut ()

Syntax Diagram:

haltuut ()

Description:

Terminates normal runuut operation, if it is active, and displays
any fault conditions that occurred during the runuut execution.

Example:
haltuut ()

Remarks:
After executing runuut, you must invoke either haltuut or
waituut to regain control of the pod before executing other
statements that send commands to the pod. A haltuut command
is equivalent to waituut (0).

Related Commands:

runuut, waituut

For More Information:

i The "Overview of TL/1" section of the Programmer'’s
Manual.

haltuut-1

haltuut

haltuut-2

handle
statement block
Syntax:

handle <fault condition> [(<argname>
{, <argname>})]

Syntax Diagram:

handle ______ < fault condition >

< argname > } _]

e eiiota

Description:

Specifies the beginning of a fault condition handler block.

Arguments:
fault condition Name of the fault condition to be
handled. (See Appendix G, "Handling
Built-in Fault Messages in TL/1
Programs," in this manual for a list of
built-in fault messages.)
argname Name of an argument for this handler
block.
Example:

handle my_ handler (a,b,c)

end my handler
! or this line could be simply end handle

handle-1

handle

Remarks:

A fault condition handler is a sequence of statements which is
executed when a fault condition occurs. Fault condition handlers
localize the statements that deal with or respond to the
occurrence of a particular fault condition; without handlers, these
same statements would require duplication anywhere the fault
condition could occur (in some cases, almost anywhere in a
program). Handlers are used to acknowledge the presence of
fault conditions, inspect data about fault conditions, and make
decisions regarding fault conditions. A program or function can
provide handlers for fault conditions that may be raised during
execution. When a handler exists for a raised fault condition, the
normal execution of the program is temporarily suspended and
the handler is invoked.

You may write your own handlers in TL/1 for any fault
conditions raised by built-in tests or TL/1 fault commands.

The fault name must be the same in both the handle statement
and the end statement. A fault handler has the name of the fault
condition it is intended to handle.

The argument list consists of argument names separated by
commas. If any arguments have default values, these values are
assigned in the declarations. The handle statement must include
all arguments named in the corresponding fault command, but it
can include additional arguments as well.

Unlike the scope of a variable name, which is static based upon
the block structure of a TL/1 program, the scope of a handler is
dynamic. The scope of a handler extends from the time at which
the containing block is entered until the containing block is
exited. If the block invokes another function, the handler
remains “active."

handle-2

handle

Variables declared inside a handler are local unless explicitly
declared to be global.

When a fault condition handler encounters either a return
statement or its last statement the handler terminates, and
execution resumes at the statement following the fault command.
If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the
termination status is "passes”.

Related Commands:

abort, declare, end, execute, exercise, fails, fault, passes,
refault, return

For More Information:

i The "Overview of TL/1" section of the Programmer'’s
Manual.

® Appendix G, "Handling Built-in Fault Messages in TL/1
Programs," in this manual.

handle-3

handle

handie-4

Syntax:

ieee
special function

ieee channel <channel>

[,
[,
L.
[

timeout <timeout interval>]
status <status byte value>]
eol <eoi assertion flag>]

message <interface message>]

Syntax Diagram:

h

| < channel >

I_ , timeouwt < timeout interval > __[

L . status < status byte value > __.l

L , 80l < eoi assertion flag > __I

Description:

L y ge < interface ge > _]

When the 9100A/9105A is configured as an IEEE-488
talker/listener, the ieee command is used to:

Set/clear the most significant bit of the serial poll status

byte.

When the 9100A/9105A is configured as an IEEE-488
controller, the ieee command is used to:

Issue IFC (Interface Clear).

Send DCL (Device Clear) to all bus devices or SDC
(Selected Device Clear) to all devices in a group.

Assert REN (Remote Enable), optionally addressing a
group of devices to listen, putting them in Remote State.
De-assert REN.

Send GTL (Go To Local) to a group of devices to put them
in Local State.

Send GET (Group Execute Trigger) to a group of devices
to trigger them.

ieee-1

ieee

For both configurations of the 9100A/9105A, the ieee command
is used to:

¢ set the EOI Enable flag associated with an IEEE-488
channel, controlling EOI assertion on the last output byte
of any print command on the channel.

* set the timeout interval associated with a channel.

If an I/O error occurs while attempting to process an ieee
command (for example, a timeout error occurs), then the
io_error fault is raised, with numeric argument err_num
containing the error number and string argument err_msg. For
example, the following is a TL/1 code fragment for an io_error
fault handler:

handle io_error (err_num, err_msg)

declare numeric err num

declare string err_msg

print using "Error ?#: ?#", err num, err_msg
end handle

Some of the operations described below are susceptible to
termination by timeout, while others are not. The former are
explicitly noted as being susceptible to timeout. If no mention is
made of timeout susceptibility, the operation is not susceptible.
When a timeout error occurs, the io_error fault is raised with the
err_num and err_msg fault arguments set to indicate a timeout.

Arguments:

ieee-2

channel A mandatory numeric argument, which
must be a channel number returned by
the open command. The channel will
optionally have an IEEE-488 address
list associated with it. (See the
description of the open function for
details.) If so, the channel is said to be
open on a group of bus devices. If not,
the channel is said to be open on the
IEEE-488 interface.

timeout

status

message

An optional numeric argument, which
specifies the timeout interval to use for
any IEEE-488 bus operation on this
channel, in milliseconds. A value of
zero specifies an infinite timeout
interval; i.e., timeouts are disabled.

An optional numeric argument, which
specifies the value to assign to the serial
poll status byte. Only the most
significant bit (bit 7) can be set from
TL/1. If bit 7 is set/cleared in this
argument, bit 7 in the serial poll status
byte is set/cleared. All other bits in the
argument are ignored.

This argument is applicable only when
the 9100A/9105A is configured as a
talker/listener. If it is configured as a
controller, the status argument is
ignored.

An optional string argument, which
specifies whether EOI (End or Identify)
assertion on the last output byte of any
print command on this channel is
enabled (the argument value is "on") or
disabled (the argument value is "off").
The argument value is case-insensitive.

Even if last byte EOI assertion is
disabled, EOI is still asserted on any
termination character associated with
the channel when it was opened (see the
open command, described in this
manual for details).

An optional string argument, which
specfies a special-purpose interface
message or operation. This argument is
only applicable if the 9100A/9105A is
configured as a controller; if it is
configured as a talker/listener, use of
this argument causes an error.

ieee-3

ieee

The message argument takes one of the following values. These
are interpreted case-insensitively:

ifc

clear

local

remote

ieee-4

The IFC line (Interface Clear) is
momentarily asserted for at least 100
microseconds.

If the channel is opened on the IEEE-
488 interface, UNT (Untalk), UNL
(Unlisten), and DCL (Device Clear) are
issued.

If the channel is opened on a group of
devices, UNT and UNL are issued
first, then each device in the group is
addressed to listen, then SDC (Selected
Device Clear) is issued.

Both forms of this operation are
susceptible to timeout.

If the channel is opened on the IEEE-
488 interface, REN (Remote Enable) is
de-asserted.

If the channel is opened on a group of
devices, UNT and UNL are issued
first, then each device in the group is
addressed to listen, then GTL (Go To
Local) is issued.

Only the latter form of this operation is
susceptible to timeout.

First, REN is asserted. If the channel
is opened on a group of devices, UNT
and UNL are issued and each device in
the group is addressed to listen.

If the latter step is performed, this
operation is susceptible to timeout.

ieee

trigger If the channel is opened on a group of
devices, first UNT and UNL are
issued, then each device in the group is
addressed to listen, then GET (Group
Execute Trigger) is issued.

This operation is susceptible to timeout.

If more than one of the optional arguments are supplied, they all
take effect in the following order: eoi, timeout, status, and
message. If none of the optional arguments are supplied, the
ieee command does nothing.

The default initial values for a channel are zero for timeout and
off for eoi. The default initial value for the serial poll status byte
is the current value of the byte; that is, changes to the serial poll
status byte survive the execution of a TL/1 program.

Example 1:

These examples illustrate operation as a talker/listener.

The following TL/1 fragment sets, then clears, bit 7 in the serial
poll status byte:

ieee_chan = open device "/ieee"
ieee channel ieee chan, status $80
ieee channel ieee_chan, status 0

The following TL/1 fragment opens the IEEE-488 interface with
the termination character set to "nothing", then prints a single
record to the interface with three separate print using commands.
EOQI assertion is disabled for the first two print using commands,
and turned on for the last one; as a result, EOI is asserted on the
last byte of the last print using command.

ieee_chan = open device "/ieee", term ""
ieee channel ieee_chan, eoi "off"

print on ieee chan, using "?#", vl

print on ieee_chan, using "?#", v2

ieee channel ieee_chan, eoi "on"

print on ieee_chan, using "?#", v3

ieee-5

The following TL/1 fragment opens the IEEE-488 interface with
the termination character set to linefeed, then perpetually inputs a
single line from the interface and echoes it back:

declare string s
ieee chan = open device "/ieee™, term "\OA"

loop
input on ieee_chan, s
print on ieee chan, s
end loop

Example 2:

ieee-6

These examples illustrate operation as a controller.

The following TL/1 fragment momentarily asserts IFC for at
least 100 microseconds:

ieee_chan = open device "/ieee"
ieee channel ieee_chan, message "ifc™

The following TL/1 fragments illustrate the two uses of the
"clear" message. The first one sends DCL to all devices on the
bus, while the second one sends SDC to a particular group of
devices:

! send DCL
ieee_chan = open device "/ieee"
ieee channel ieee_chan, message "clear"

! send SDC to addresses 2, 3, and 4:10

! (primary address 4, secondary address 10)
ieee_chan = open device "/ieee/2,3,4:10"
ieee channel ieee_chan, message "clear"

The following TL/1 fragment asserts REN:

ieee chan = open device "/ieee"
ieee channel ieee_chan, message "remote"

The following TL/1 function sends a hypothetical voltmeter a
command requesting a measurement, inputs the measurement,
strips the measurement of whitespace, verifies that the
measurement string represents a floating-point value, and returns

ieee

the value. If any I/O errors which result in the io_error fault
occur, they are handled locally.

Note that with this fragment a global variable is used to flag
whether I/O failed. In an application that uses this function, the
caller would examine this flag before attempting to use the return
value from get_rdg for anything. Also, note that the io_error
handler doesn't do much about the I/O error. In a real
application, the I/O error handling would be more sophisticated,
and have provision for retries, clearing the IEEE-488 bus, etc.

function get_rdg

handle io_error (err num, err_msg)
declare
numeric err num ! I/O error number
string err msg ! I/0 error message

global numeric term chan ! terminal channel
global numeric io failed ! I/O failed flag
end declare
io_failed=l
print on term chan, using "Error ?#: 2#",
err_num, err_msg
end handle

declare
global numeric io_ failed
global numeric term chan
numeric dvm chan
string dvm meas_string
end declare

io_failed = 0

! clear the "I/O failed" flag
term chan = open device "/terml"
! open the error message channel

! open a channel to the DVM, which has IEEE-488
! address 1,

! using a linefeed character as the terminator
dvm_chan = open device "/ieee/1", term "\OA"

if (io_failed) then return (0.0)

ieee-7

ieee

! set the timeout on the DVM channel to 4 .
! seconds

ieee channel dvm_chan, timeout 4000

if (io_failed) then return (0.0)

! send the reading request to the DVM
print on dvm chan, "rdg?"
if (io_failed) then return (0.0)

! input the measurement string
input on dvm _chan, dvm meas string
if (io_failed) then return (0.0)

! this hypothetical DVM terminates readings with a
! carriage return, linefeed combination. The

! linefeed will have been removed, since it was

! specified as the termination character; however,
! dvm _meas_string will still have the carriage

! return. Strip it and any other whitespace via

! the 'token' function.

dvm_meas_string = token str dvm meas string, from 1
! verify that the measurement string is a

! floating-point number

if (isflt (dvm_meas_string)) then ‘
return (fval (dvim_meas string))

else

io failed =1
return (0.0)
end if

end function

Related Commands:

open, print, input, poll

For More Information:

ieee-8

The "IEEE-488, 9100A-015" section of the Technical
User's Manual".

The "9100 Series Error Numbers" appendix in this
manual.

if (block form)
statement block
Syntax:

if <condition> then

Syntax Diagram:

If . <condition> ___ then

Description:

Specifies the beginning of an if block.
Arguments:

condition A logical expression.
Example 1:

! if the variable "initialized" has the
! value 0, then...

if not initialized then

i=20

start = 0

stop = 255

incr = address_increment
end if

Example 2:

if b <> 0 then

if a/b > 10 then ! bigtest is executed
execute bigtest ! only if both b <> 0
! and a/b > 10
end if
end if

if (block form)-1

if (block form)

Example 3:

! if the value of the variable "lower" is
! less than the value of the variable

! "upper", then perform the program/

! function "rangetest™, using "lower" and
! "upper" as arguments.

if (lower <= upper) then
range_test (lower , upper)

! else perform the program/function
! "range error" using “lower" and “upper"
! as arguments.
else
range_error (lower , upper)
end if

Example 4:

if 1lbit < 4 then

b=20
else if 1lbit = 4 then
b =1
else if 1lbit = 5 then
b =2
else ! (if 1lbit > 5 then)
b =3
end if

Remarks:

An if block executes a list of statement lines if a condition in the
if statement is true (non-zero). If the condition is true, execution
begins on the line immediately following the if statement. When
the controlled statements have been completed, execution
continues at the line following the end if statement.

If the condition is false, the condition of the first else if statement
(if one exists) is evaluated; if the condition is true, the statements
controlled by the else if block are executed, then execution
continues at the line after the end if statement. If the condition of
the else if statement is false, the condition of each following
else if statement is evaluated in the same way. ‘

if (block form)-2

if (block form)

If the condition of the if statement and all of the else if statements
are false, the statements controlled by the else block (if one
exists) are executed. If no else block exists, execution continues
at the statement following the end if.

NOTE
You may nest if statements within other if

statements. TL/1 does not limit the number of if
levels used.

Related Commands:

end, if (statement form)

For More Information:

¢ The "Conditional Expressions” section in Section 2 of this
manual.

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

if (block form) -3

if (block form)

if (block form)-4

if (statement form)
statement
Syntax:

if <condition> then <statement list>

Syntax Diagram:

if __ < condition > . then «< statementlist >

Description:

Executes statement(s) under control of a condition.

Arguments:
condition A logical expression.
statement list One or more TL/1 statements, separated
by backslashes (V), all appearing on one
line.
Example 1:
if x = 10 then a = a + 1

Example 2:

if x = 10 then a

a+1\b=Db+1
Example 3:

if x = 10 then a

a+ 1\ if a = 11 then b = 3

if (statement form)-1

if (statement form)

Remarks:

A single-line if statement controls only the statements which
appear on a single line. The statements on the line are executed if
the condition is true; after the controlled statements have been
executed, execution continues on the following line. If the
condition is false, the controlled statements are not executed.

An if statement may appear within another if statement. In this
case, execution continues throughout the entire statement line,
until either the last statement on the line is executed, or one of
the conditions evaluates to false.

You may structure conditions so that under certain circumstances
they are not fully evaluated. For example, in the statement:

if (b <> 0) and (a/b > 10) then x=1
the second condition must not be evaluated when b is equal to

zero, because it would cause a divide-by-zero error. To avoid
the potential error, you write:

if (b <> 0) then if (a/b > 10) then =x=1

The first if statement controls all statements to its right. If the
first condition is false, the second condition is not evaluated.

Related commands:
if (block form)

For More Information:

¢ The "Conditional Expressions"” section in Section 2 of this
manual.

M The "Overview of TL/1" section of the Programmer’s
Manual.

if (statement form)-2

input
statement
Syntax:

input [on <channel>,] <variable list>

Syntax Diagram:

Input , < variable list >
L on < channel >, _]

Description:

Reads data from the text file, serial port, keyboard, or other
interface associated with a specified channel, and stores it into
specified variables. The input command waits for characters to

be input.
Arguments:
channel A numeric expression that identifies a
device open for input. (Default = the
first channel opened for "input" or
"update")
variable list List of variables in which to store input
data values.
Example 1:

input on ichan, a, b, ¢
! reads in three values from device on ichan
! when entered, these values must be separated
! by space characters

input-1

input

Example 2:

input startaddr, endaddr, addrincr
! reads in three values from
! operator's keypad
! provided a channel has been opened

Remarks:

Before using the input statement, the input variables must be
declared and the input device must be opened for input. The
input statement performs the following actions:

¢ Suspends program execution until data appears on the
specified channel.

® Reads data from the specified channel.
® Stores the data in the specified variables.

If the channel is buffered, the input statement reads data from the
channel until it encounters the channel's termination character,
which usually defaults to a new-line character (OD hexadecimal
on most keyboards, the ENTER key on the operator's keypad).
If the channel is not buffered, the input statement suspends
execution until it reads a single character (any key code).

Space characters must be used to separate multiple input values
entered with an input command.

To input hexadecimal numeric data, use the input using
command.

input-2

input

. If an I/O error occurs while attempting to process an input
command (for example, a timeout error while attempting to input
from an IEEE-488 device), the 'io_error' fault is raised, with
numeric argument 'err_num" containing the 9100A/9105A error
number and string argument 'err_msg' containing a description
of the error. For example, the following is a TL/1 code
fragment for an io_error fault handler:

handle io error (err_num, err_msg)

declare numeric err_num

declare string err_msg

print using "Error ?#: ?#", err num, err_msg
end handle

If the input is obtained from a channel opened on either the
IEEE-488 interface or a device connected to the IEEE-488
interface, then buffered input can be terminated by either the
termination character associated with the channel or by the
assertion of EOI on the last input character. If input is
terminated by EOI assertion and the associated character is not
the termination character, then that character is included in the

. input value.

Related Commands:
input using, open, print, poll, ieee

For More Information:

A The "Overview of TL/1" section of the Programmer’s
Manual.

¢ The "Operator's Keypad Mapping to TL/1 Input,"
appendix in this manual.

® The "Programmer’s Keyboard Mapping to TL/1 Input,”
appendix in this manual.

¢ The"9100A/9105A Error Numbers" appendix in this
manual.

° The "IEEE-488, 9100A-015" section of the Technical
User's Manual".

input-3

input

input-4

input using
statement
Syntax:

input using <format string> [, on <channel>],
<variable list>

Syntax Diagram:

input using < format string > , < variable list >
I_ , on < channel > J

Description:

Reads data from a specified channel, compares it with an
expected format, and stores it in specified variables.

Arguments:
format string The string that defines the input format.
("buffered" mode only.)
channel A numeric expression that identifies a
device open for input. (Default = the
first channel opened for "input" or
"update".)
variable list List of variables in which to store input
data values.
Example 1:

input using "TITLE: ####### WR.PROT: ###",t,wp

! the input data:

! TITLE: prog 1 WR.PROT: YES
! produces the values:

! t = "prog 1 ", wp = "YES"

input using-1

input using

Example 2:

input using "& @ % #", a, b, ¢, d
! The input data:
! 12314
! produces the values:
! a=1,b=2, c=3,d=4
! The following input data produces an error:
! 4 321
! because "4" is not matched by the "&"
! picture, which expects only "1" or "0O"

Example 3:

input using ":###3#%#SHL#S#SHL#L#%#%", addr,a,b,
c,d,e,f,g,h,chksum

! The input data:

! :100000010203040506078F

! produces the values

! addr = 1000, a =0, b =1, ¢c = 2,
! d=3, e=4, £ =5, g=6, h=1717,
! chksum = 8F

Example 4:

input using "?& ?Q@ ?% 2# 2*", a, b, ¢, 4, £

! The input data:

! 0101 100 100 32 1.97

! produces the decimal values

! a =15, b =100, ¢ = 256

! d = 32, £ = (floating) 1.97

! The input data:

! 011 25 11 9999 2.0E30

! produces the decimal values

! a=3, b=25, ¢ =17,

! d = 9999, f = (floating) 2.0E+30

input using-2

input using

‘ Example 5:

input using "##~~" ###~~EEEEE", fl, f2

! The input data:

! 3.2 32.3E+100

! produces the floating-point values
! f1 = 3.2, £2 = 3.23E+101

Remarks:

The input using statement requires that the input variables be
previously declared and that the input device has already opened
for input. The input using statement performs the following
actions:

d Suspends program execution until data appears on the
specified channel.

d Reads data from the specified channel.
‘ d Stores the data in the specified variables.

If an I/O error occurs while attempting to process an input using
command (for example, a timeout error while attempting to input
from an IEEE-488 device), then the io_error fault is raised, with
numeric argument err_num containing the 9100A/9105A error
number and string argument err_msg containing a description of
the error. For example, the following is a TL/1 code fragment
for an io_error fault handler:

handle io_error(err num, err_msg)

declare numeric err_ num

declare string err msg

print using "Error ?#: ?#", err_num, err msg
end handle

input using-3

input using

If the input is obtained from a channel opened on either the
IEEE-488 interface or a device connected to the IEEE-488
interface, buffered input can be terminated by either the
termination character associated with the channel or by the
assertion of EOI on the last input character. If input is
terminated by EOI assertion and the associated character is not
the termination character, then that character is included in the
input value.

The input using statement is an extended form of the input
statement which uses format specifications which are provided
in format strings. Through format specifications, you can set
the expected number of characters of digits for each data value,
and the radix (hexadecimal, decimal, or binary) for numeric
data. You can also specify other data that must appear in the
input but is not actually required for storage into variables. An
error occurs when the number of input values does not match the
number of format pictures in the format specification.

A format string contains zero or more format pictures. A format
picture is a string that describes the format for a single data
value. Format pictures are one of two types: fixed-width and
variable-width. Fixed-width format pictures match each input
character with a format picture character, while variable-width
format pictures match as many input characters as possible in the
context of the data type for the format picture.

input using-4

input using

Fixed-width Formatted Input

A fixed-width format picture consists of zero or more "#"
characters (floating digit places), followed by one or more "%",
"@","&", "#", or "A" characters (fixed digit places,) which also
describe the radix. The format picture characters are defined

below:
Symbol
#

%

Description

A floating digit or character place. If this
symbol is in the right-most place in a
numeric input format picture, the input is
interpreted in decimal radix. Otherwise,
this symbol is interpreted as a floating digit,
matching digit, or a space. For string
input, this symbol matches with any
character.

Required digit place for hexadecimal
numbers. This symbol, and any "#"
symbols to its left matches with a
hexadecimal digit.

Required digit place for decimal numbers.
This symbol, and any "#" symbols to its
left matches with a decimal digit.

Required digit place for binary numbers.
This character and any "#" symbols to its
left matches with a binary digit.

Required digit place for floating-point
numbers. A sequence of "A" characters
may optionally be followed by a fixed
sequence of five "E" characters. For output
format pictures, this represents the
exponent field; here, it is provided merely
for symmetry with output format pictures.

input using-5

input using

If the value is to contain more than one digit or character, the
picture must be extended to the left by "#" characters, one for
each additional digit or character. For example, the picture "@"
represents a single-digit decimal number; the picture "###@"
represents a four-digit decimal number. The picture "###HHHH"
represents a seven-character string or a seven-digit decimal
number. The picture "%%%%" represents a four-digit
hexadecimal number with required leading zeros (O0FF).

If numbers in the input string are not separated by non-numeric
characters, one of the required digit characters must appear as
the last character of the format picture. The two format pictures,
"#HHEE" and "#HEH@", when combined, yield a format picture,
"#HHHH@", which is interpreted as an eight-digit decimal
picture, not two four-digit pictures. If twe pictures are needed,
use a space ("#H#H#H ##HHE"), use the fixed digit characters
("HH%HHED'), or use two consecutive input statements.

Fixed-width input format checking for floating-point numbers is
less strict then it is for other data types. The number of input
characters implied by the width of the format pictures are
collected and checked to make sure that they represent a valid
string representation of a floating-point number.

Variable-Width Formatted Input

Like a fixed-width format picture, a variable-width format
picture describes the format for a single data value. The
difference is that a variable-width format picture accepts as many
input characters as it can use to match the picture's data type. A
variable-width format picture consists of a single "?" character,
followed by a single character denoting the picture type. The
following special picture type characters are defined:

Match a variable-width string or decimal number.
% Match a variable-width hexadecimal number.

@ Match a variable-width decimal number.

input using-6

input using

‘ & Maich a variable-width binary number.
A Match a variable-width floating-point number
? Match a single "?" character.

If the picture type character is not one of the above, then the
format picture means "match one or more of the literal
character”. For example, the input picture"?X" will match one
or more "X" characters in the input. For variable-width literal
character matches, no assignment to input variables is
performed.

Note that it is not possible to match a variable number of "?"
characters; that is, the picture "??" implies a match of exactly one
"7" character.

Related Commands:
input, open, print using

‘ For More Information:

A The "Overview of TL/1" section of the Programmer'’s
Manual.

¢ Appendix J "9100A/9105A Error Numbers".

® The"9100A/9105A Error Numbers" appendix in this
manual.

o The "IEEE-488, 9100A-015" section of the Technical
User’'s Manual".

input using-7

input using

input using-8

instr
function

=)
Syntax:

instr (<string>, <substring>)
instr str <string>, key <substring>

Syntax Diagram:

Instr —____ str <sting> , key «<substring >

Description:

Returns the index number at which a sub-string appears in a
string; returns zero if the sub-string does not appear in the

string.
Arguments:
string String to be searched.
substring Sub-string to be searched for.
Returns:

The index number if the substring is found; zero if the sub-string
is not found.

Example:

X = instr ("enter data and address", "data")
! the variable x is set to 7.

instr-1

instr

Remarks: ‘

An index number is the number corresponding to a particular
character position within a character string. For example, the
index of "r" in "America" is 4.

instr-2

isflt
function

Syntax:

isflt str <expression>

isflt (<expression>)

Syntax Diagram:

Istit — ________ etr <expression >

Description:

The isflt command is used to pre-test an expression for validity
as an argument to the fval command.

Arguments:
expression The string expression that is to be
tested.
Returns:

1 if the expression is a valid argument to fval, implying
that fval will not report an error with the expression as its
argument

0 if the expression is not a valid argument to fval

Examples:
isflt ("foo™) ! returns 0
isflt ("1.0™) ! returns 1

isfit-1

isfit

Remarks:
The isflt command is particularly useful for strings obtained by

the input command, which may be expected to be strings

representing valid floating-point numbers, but are not guaranteed
to be.

Related Commands:

Jval, isval, token

isflt-2

isval
function

Syntax:

isval str <expression> [, radix <radix>]
isval (<expression>, <radix>)

Syntax Diagram:

Isval sir < expression >

I_ ,radiXx «<radix > _J

Description:

The isval command is used to pre-test a set of arguments for
validity as arguments to the val command.

Arguments:
expression The string expression which is to be
tested for representation of a valid
number in the indicated radix.
radix A numeric expression for the radix of
the interpreted number. Allowable
values for radix are 2, 8, 10 (default),
and 16.
Returns:
1 if the arguments are a valid set to val (implying that val

will not report an error with the given argument set).

0 if the arguments are not a valid argument set to val.

isval-1

isval

Remarks:

The isval command is useful for strings obtained by the input
command, which may be expected to be strings representing
valid numbers, but are not guaranteed to be.

Examples:
isval ("foo") ! returns 0
isval ("1", 2) ! returns 1
isval ("3", 2) ! returns 0
isval ("3", 10) ! returns 1

Related Commands:

val, isflt, token

isval-2

len
operator

Syntax:

len <string>

Syntax Diagram:

len ________ <string >

Description:

Counts the number of characters in the string operand.

Arguments:
string String or string expression whose
length is to be determined.
Returns:

The number of characters in the string.

Example 1:

X len "I/0 finished" ! the variable x is

! set to C (hex)

Example 2:

a
X

"Hello"

len a ! the variable x is
! set to 5

len-1

len

len-2

level
function

Syntax:

level [device <device name>] [, pin <pin number>]
[, type <type name>] [, refpin <refpin name>]

level (<device name>, <pin number>, <type name>,
<refpin name>)

level ()

Syntax Diagram:

()

Ievel_J__ device « device name > I

| pln < pin number >
| type « lype name >
L refpln <« refpin name >

< -
] “

Description:

Returns the synchronous level history or asynchronous level
history for one pin. The data can be requested either in terms of
an I/O module pin, a component pin, or the probe. This
command will return useful information only after an arm . . .
readout block has taken a measurement.

Arguments:
device name I/O module name, clip module name,
probe name, or reference designator.
(Default = "/probe")
pin number Pin number.
(Default = 1)
type name "clocked" or "async".

(Default = "clocked")

level-1

level

refpin name Specify the device and pin in string ‘
format. The refpin argument is used to
override the device and pin values.
(Default ="")

Returns:

A number that represents the level history:

0 - No levels clocked.
1 - Low.

2 - Invalid.

3 - Invalid, low.

4 - High.

S - High, low.

6 - High, invalid.

7 - High, invalid, low.

Example 1:

mod = clip ref "u3", pins 40

arm device mod
execute stim prog
loop while ((checkstatus(mod) <> $F))
end loop

readout device mod

modlevel = level device "u3", pin 3, type
"clocked"”

Example 2:

arm device "/probe"

readout device "/probe"
probelevel = level device "/probe", type "clocked"

level-2

level

' Remarks:

The level function returns the synchronous level history or
asynchronous level history for one pin. The data can be
requested either in terms of an I/O module pin or a component
pin.

The level can be requested for a specific pin of an I/O module by
specifying the module name ("/mod1", "/mod2", etc.) as the
device argument. The pin argument is interpreted as an I/O
module pin. Refer to Appendix E for tables that show what I/O
module pin numbers to use for every possible clip module.

If a component name ("U1", "U2", etc.) is specified as the
device argument, the pin argument is interpreted as a component
pin. The level function determines the I/O module and pin
number that corresponds to the specified component pin. The
named component must have been previously named in a clip
command.

If the string value for refpin is not a null string ("), the values
‘ of the device and pin arguments are ignored.

The level function should be called only after the execution of an
arm . . . readout block.

Related Commands:
arm, count, readout, sig

For More Information:

. The "Overview of TL/1" section of the Programmer’s
Manual.

level-3

level

level-4

loadblock

function

Syntax:

loadblock file <file name> [, format <format name>,
offset <exp>]

loadblock (<file name>, <format name> , <offset
expression>)

Syntax Diagram:

loadblock ___ flle <« file name >

| format_ < formatname > __|
| offset _ < expression >

<) <
- -

Description:

Loads the contents of a file in a standard ASCII form (Motorola
S-Record format or Intel Hex format) into UUT or pod overlay
RAM. The file contains information about the starting address
and number of data bytes.

The value of the offset expression is interpreted as a 32-bit 2's
complement value and added to the address in each record of the
data file, to obtain the load address.

Arguments:

file name The name of the file containing the
required data.

format name The ASCII format in which the data
was previously stored. Either "intel" or
"motorola".
(Default = "motorola".)

offset This value is added to each address in

the data file to obtain the load address.
(Default =0.)

loadblock-1

loadblock

Examples:

loadblock file "test_lcd", format "motorola”
loadblock ("pgml", "motorola™, $10000)

Related Commands:
readblock, writeblock

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

loadblock-2

log
function

Syntax:

log base <expression 1>, num <expression 2>
log (<expression 1>, <expression 2>)

Syntax Diagram:

log base < exprossion 1 > , hum < expression 2 >

Description:

Computes the logarithm of the floating-point number argument
value in the base specified by the floating-point base argument

value.
Arguments:
expression 1 The floating-point value to use as the
base while computing the logarithm.
expression 2 The principal argument (the floating-
point value) to the logarithm
computation.
Returns:

The floating-point logarithm of expression 2 in the specified
base (expression 1).

Examples:
f = log base 10.0, num 100.0 ! result is 2.0
f = log (2.0, 64.0) ! result is 6.0

log-1

log

Remarks:

If any of the following is true, an error will result:

o the base argument value is less than or equal to 0.0.

the num argument value is less than or equal to 0.0.
the base argument value is equal to 1.0.

Related Commands:

pow, natural

log-2

|OOp
statement
Syntax:

loop while <condition>
loop until <condition>

loop for <variable> = <expression 1> to
<expression 2> [step <expression 3>]

loop

Syntax Diagram:

loop while < condition >
untll |

for < variable> = <expression 1 >

- 1

l_ to <expression 2 >

L step <expression 3 > _J

Description:

Specifies the beginning of a loop block.

Arguments:
condition A logical expression which controls
loop termination.
variable A variable; used as an index.
expression 1 An integer expression for the lowest
value in the range.
expression 2 An integer expression for the highest

value in the range.

loop-1

loop

expression 3 An integer expression which specifies .
the increment after each loop iteration.
(Default = 1)

Example 1:

! Establish a loop using the variable "a"™ for
! control. The statement within the loop

! block, in this example "a = read (porta)" is
! repeated until the variable "a" has a non-

! zero value. In the "a = read (porta)"

! statement, "a" is set to the value of the

! data read from the address specified in the
! variable "porta".

a=2=0
loop while a = 0

a = read (porta)
end loop

Example 2:

b=20 ! "b" is set to zero. .
loop until (a = S$FF) ! "a" is set to data read

a = read (b) from address "b".

b=Db+1 b is incremented by 1.
end loop the loop repeats until
"a" (which is read
from b) obtains the
value FF.

loop-2

loop

Example 3:

loop for i = 1 to 5 step 2

! establish loop control with
! variable i. Each time that
! end loop is reached, the
! variable i is incremented by
! 2. This process continues
! until 1 is greater than 5.
! Then, loop terminates.
end loop

Remarks:

The loop block executes a list of statement lines repeatedly under
control of a condition. The condition controls one of the
following:

o Continuation.
o Termination.
o Number of iterations.

The loop . . . while block repeats the controlled statements as
long as a condition is true. The condition is evaluated first. If it
is true, the block is executed and the condition is evaluated
again. If the condition is false at any time it is evaluated,
execution continues with the statement on the line following the
end loop statement.

The loop . . . until block repeats the controlled statements until
an exit condition becomes true. The condition is evaluated first.
If it is false, the block is executed, and the condition is evaluated
again. If the condition is true at any time it is evaluated,
execution continues with the statement on the line following the
end loop statement.

The loop . . . for block repeats the controlled statements for each
value of an index variable within a specified range, after which

loop-3

loop

execution continues at the line following the end loop statement. ‘
The index variable must be a numeric (integer).

The step expression is an optional segment of the loop . . . for
block which indicates how much to add to the loop control
variable after each iteration of the loop.

The value of the index variable is undefined outside of the block.

A loop block with no termination condition repeats the controlled
statements indefinitely.

Related Commands:
end

For More Information:

¢ The "Overview of TL/1" section of the Programmer'’s
Manual.

loop-4

Isb

operator
Syntax:

1sb <numeric expression>

Syntax Diagram:

Isb _______ < numeric expression >

Description:

Returns the index of the least-significant set bit in the operand.

Arguments:
numeric expression Operand from which to determine the
least-significant bit.
Returns:

An index number which ranges from 0 to 31 (where an index of
0 corresponds to the least-significant bit).

Example:

v
X

SFA ! sets the variable v to hexadecimal FA
1sb v ! the variable x is set to 1

Remarks:

A numeric expression that evaluates to zero causes an error since
no bits are set.

Related Commands:

msb

Isb-1

Isb

Isb-2

mid
function

Syntax:

mid str <string>, from <start position>,
length <length>

mid (<string>, <start position>, <length>)

Syntax Diagram:

mid str < sting > , from «slart position > , length <length >

Description:

Extracts a new string of the specified length from the given
string beginning with the character at the specified index. The
sum of the start position and the length number cannot exceed
the number of characters in the string plus 1.

Arguments:
string String or string expression from which
to perform extraction.
start position Integer expression. The left-most
character of the string is position
number 1.
length Integer expression.
Returns:
The extracted string.

mid-1

mid

Example: ‘

x = mid str "data 56", from 6, length 2
! the variable x is set
! to "56"

mid-2

msb

operator
Syntax:

msb <numeric expression>

Syntax Diagram:

msb ______ < numeric expression >

Description:

Returns the index of the most-significant set bit in the operand.

Arguments:
numeric expression Operand from which to determine the
most-significant set bit.
Returns:

An index number which rages from 0 to 31 (where an index of 0
corresponds to the least-significant bit).

Example:
X = msb $A ! the variable x is set to 3
Remarks:

A numeric expression that evaluates to zero causes an error since
no bits are set.

Related Commands:

Isb

msb-1

msb

msb-2

natural
special function

Syntax:
natural e

natural pi

Syntax Diagram:

natural °

Description:

Returns the floating-point value of a selected natural constant.

‘ Argument:

The natural function takes a single symbolic argument,
specifying which natural constant is desired. This argument is
actually an argument name that does not take an associated
value. This means you will usually need to surround the natural
command with parentheses to avoid accidentally associating a
value with it, as demonstrated in the examples below.

Choose one of the arguments:

e Specifies the value of e (for use with the log function to
compute natural logarithms).

pi Specifies the value of pi.

Examples:
theta = natural pi ! theta is set to pi
theta = (natural pi)/2.0 ! theta is set to pi/2
f = log base (natural e),num 3.0
. ! £ is set to natural logarithm of 3.0

natural-1

natural

Remarks: ‘

The narural function allows access to useful natural constants to
maximum precision, without having to look them up and type
them in by hand.

Related Commands:

log, sin, cos, tan

natural-2

next

statement
Syntax:

next

Syntax Diagram:

next

Description:
Terminates a for . . . next block.

Example:

for k = 1 to 100 ! begins a for ... next block

next ! ends a for ... next block

Remarks:

The for . . . next block is provided for ANSI compatibility, but
the recommended TL/1 structure is the loop for . . . end loop
block.

Related Commands:
end, for, loop

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

next-1

next

next-2

open
special function
Syntax:

open device <terminal name> [, as <as>]
[,mode <mode>] [,term <termination char>]

open device <file name> [, as <as>]
[, mode <mode>] [,term <termination char>]

open device <port name> [{, <option keyword>
<option value>}] [, as <as>] [, mode <mode>]
[,term <termination char>]

open device <window name> [{, <option keyword>
<option wvalue>}] [, as <as>] [, mode
<mode>] [,term <termination char>]

open device <ieee-488 name> [, as <as>]
[,mode <mode>] [,term <termination char>]

open ()

Syntax Diagram:

0

open J__ device < terminal name >

< file name >
< port name >

| < option keyword > < option value > _|

> , <
w a

< window name >

|- < option keyword > < option value > _]

< . 4
w W

as <as>
mode <« mode >
term < termination char >

<4 ’

7 3

open-1

open

Description:

Connects the program to a serial port, terminal, text file, or other
interface for input or output by allocating the device to the
program and returning an I/O channel number. It also sets
parameters for serial ports and windows.

Arguments:
device Terminal name;

"fterml" for the operator's
interface.

"fterm2" for the
programmer's
interface.

File name:

The name of any text file enclosed

in quotes.
Port name:
"/portl” for RS-232 port1
"/port2" for RS-232 port2
Window name:
"fterm1/win" for operator's
display.
"/win" (or
"term2/win") for monitor.

(Default = "/term1")

open-2

open

as

mode

IEEE-488 interface or device name:

"fieee" for the IEEE_488
interface.

"fieee/address list" for one or more
devices attached to the
IEEE-488 interface.

where address list is a list of comma-separated
IEEE-488 addresses. Each address is either a
single radix 10 number indicating the device
address or a pair of numbers separated by a
colon character, indicating the primary and
secondary addresses of the device. For
example:

"fieee/1" for the device at address 1.

"fieee/2,4:10" for the group consisting of
the device at address 2 and
the device with primary
address 4 and secondary
address 10.

"output”, "update", "input", or "append".
(Note: "update” is not allowed for file names.)

Default for terminal names: "update"

Default for file names: "output”
Default for port names: "update”
Default for window names: "update”
Default for IEEE-488: "update"

"buffered” or "unbuffered".
(Default = "buffered")

The mode argument determines how newline
characters are translated by TL/1 print, print
using, input, or input using commands for
serial ports, and how string values are input.

open-3

open

term

The termination character string argument
specifies the termination character to associate
with the channel. The length of the string must
be less than or equal to one character. If the
length is zero, no termination character is
associated with the channel. The termination
character is used to mark the end of input
records and is appended to printed expressions.

If the term argument is not supplied, the
termination character default is the newline
character. An exception to this is an IEEE-488
channel, where the default is the linefeed
character.

The following option keywords apply only if the device is a

window:

Option
Keyword

XO0rg, yorg

xdim, ydim

open-4

Option
Value(s)

Numeric expressions for the location of the
upper left-hand corner of the window in
characters.

Default values: xorg =0
yorg =0

Numeric expressions for the size of the
window in characters.

Default values for operator's display:
xdim =42
ydim= 3

Default values for monitor;
xdim = 80
ydim =24

open

xscale, yscale

border

Numeric expressions for the full-scale
coordinates for objects to be displayed by a
window. The maximum value for xscale and
for yscale is 10000.

Default values:
xscale = 1000
yscale = 1000

A string expression for the title to be centered at
the top of the border. If the string expression
is a null string (""), the border will not have a
title.

(Default: no border)

The following option keywords apply only if the device is an
RS-232-C:serial port:

Option
Keyword

speed

bits

stop

parity
stall
Cts

autolf

Option
Value(s)

Baud rate: 19200, 9600, 4800, 2400, 2000,
1800, 1200, 600, 300, 134, or 110.

Number of data bits: 5, 6, 7, or 8.

Number of stop bits: 0, 1, or 2 (0 represents
1.5 stop bits).

"even", "odd", or "none".
Stall/Unstall control: "on" or "off™.
Clear-to-Send handshake: "on" or "off".

Auto linefeed: "on" or "off™.

open-5

open

Example 1:

ichannel = open device "hexdata", as “input"

Example 2:

file2 = open device "/drl/rombytes"™, as "output”

Example 3:

pl = open device "/portl"™, speed 1200, bits 8,
parity "even"

Example 4:

! Open a window on the monitor with its origin
! at (20,6) and with a dimension of 40 by 12

! (centered on the display). Full-scale

! coordinates of the objects to be displayed

! in the window are to be (1000, 1000).

channel = open device "/win", xorg 20, yorg 6,
xdim 40, ydim 12, xscale 1000, yscale 1000

Remarks:

open-6

Input and output are handled through I/O channels. An 1I/O
channel is a connection between TL/1 and the operating system.
You create an I/O channel with the open command before
conducting any input or output operations. When
communication to an I/O channel is complete, you close the
channel using the close command. Attempted access to a
channel that has not already been opened results in a run-time
error.

Typically, you open one channel for each device that requires
input or output. You may open more than one channel to the
same device, but this action is not recommended as it may result
in non-standard operation.

open

The minimal open statement:
open ()

is used to open a channel to the operator's display and keypad
for update. In this case, you need not specify the channel in
subsequent print and input commands. Some other forms of the
minimal open command include:

open device "/term2" ! programmer's interface

open device "/portl"™ ! RS232C port #1

open device "/port2"™ ! RS232C port #2

open device "/ieee" ! IEEE-488 interface

open device "/ieee/l1"™ ! IEEE-488 device at
address 1

In these cases, channel specification with print or input is also
optional.

You may open channels to the programmer's monitor and
keyboard, the operator's display and keypad, the two RS-232
ports, to text files on the hard or floppy disk drives to the IEEE-
488 interface, and to devices attached to the IEEE-488 interface.
Special rules apply to input and output depending on the device
you are using. These rules are summarized below:

d Operator's Display and Keypad - to open a channel
to the operator's interface, specify "/term1" as the device
name. TL/1 accesses the operator's display as a 3-line by
42-column text area and escape sequences for display
attributes are recognized.

Input is read from the operator's keypad, including the soft
keys and optional foot pedal (via the external switch
interface). In the default line-buffered mode, the keypad
alpha lock is engaged which causes each key press to
return the alphabetical representation after the ENTER key
is pressed. In the unbuffered mode, characters are sent to
TL/1 immediately. If update mode is specified, input
characters automatically appear on the display. The
CLEAR key erases the keystrokes in the input buffer and
on the display allowing for re-entry.

open-7

open

open-8

Monitor and Programmer's Keyboard - to open a
channel to the programmer's interface, specify "/fterm2" as
the device name. TL/1 accesses the monitor through a text
window, which becomes active until the TL/1 program
completes execution. TL/1 accesses the monitor as an
ANSI 3.64 compatible terminal. See Appendix B,
"Control Codes for Monitor and Operator's Display," for
more information. If a program which uses the monitor as
an output channel is executed under the debugger, the
message window will cover the debugger window.

Input is read from the programmer's keyboard. In line-
buffered mode, characters are stored until the Return key is
pressed. In unbuffered mode, characters are sent to TL/1
immediately. If update mode is specified, input characters
automatically appear on the display, and the rubout key is
used to erase characters before they are sent to TL/1. In
addition, typing Ctrl-U will erase all the characters on a
line and typing Ctrl-R will reprint a line. Tabs are
converted to sequences of spaces.

Windows - to open a channel to a window, specify
"/term1/win" as the device name for a window on the
operator's display and "/win" (or "/term2/win") as the
device name for a window on the monitor. These
extensions allow window operations to be performed on
fterm1 and /term?2 since they are actually implemented as
windows covering each display.

A window is created with the open command. This allows
normal print and input to be done on windows just as it is
done on any other display device. Windows are permitted
to overlap each other. What is displayed is determined by
the order in which the windows were created. A new
window is always on top of all the other windows. An
existing window may be moved to the front or the back
using the winctl command. The winctl command also
permits making a window invisible by "hiding" it, and
making an invisible window visible by "unhiding" it.

open

The location of the upper, left-hand corner of a window is
specified by xorg and yorg. The size of a window is
specified by xdim and ydim. The size of the object to be
displayed in the window is controlled by xscale and
yscale. All references to locations inside a window and
sizes of objects displayed in a window are made relative to
the full-scale coordinates specified. For example, if
xscaleand yscale are both 1000, the center of the window
is (500, 500). If the object size is larger than the window,
only part of the object will be visible at any given time.

All normal print and input statements operate on a
window. Doing input on a window device open in update
or read mode will cause input from programmer's
keyboard (in the case of a window on the monitor) and
from the operator's keypad (in the case of a window on the
operator's display). Each window is an ANSI terminal
with all of the escape sequences and control codes active as
defined in Appendix B.

RS-232-C Ports - to open a channel to one of the two
RS-232-C ports, specify either "/portl"” or "/port2" as the
device name.

When you open a port for input in buffered mode,
characters are held until a carriage return character
(hexadecimal OD) is read. Upon reading the carriage
return, the input is sent to TL/1. In unbuffered mode,
characters are sent to TL/1 immediately.

When you open a port for update, the input characters are
immediately echoed as output. If a delete character
(hexadecimal 7F) is read as input, the last character is
deleted and a backspace (08), space (hexadecimal 20),
backspace (08) sequence is sent as output. If Ctrl-U is
read as input, the input line is deleted. If Ctrl-R is read as
input, all input since the last carriage return is re-sent as
output. When a port is opened in any mode other than
update, characters are not echoed, and the delete, Ctrl-U,
and Cul-R characters have no special effect.

open-9

open

open-10

In both buffered and unbuffered mode, when XON/XOFF
flow control is enabled, Ctrl-S is used to stall the output
and Ctrl-Q is used to restore its flow.

IEEE-488 Interface and Devices - When the
9100A/9105A is configured as an IEEE-488 talker/listener,
the appropriate way to open the IEEE-488 interface is to
open "fieee". Since the 9100A/9105A is not a controller
and cannot address other devices to listen or talk, IEEE-
488 device name arguments containing an address list (e.g.
"fieee/1", "fieee/2,4:2") are not relevant to operation as a
talker/listener. Values printed to and input from the IEEE-
488 interface are sent to and received from other devices
on the IEEE-488 bus. It is the responsibility of the
controller to ensure that the 9100A/9105A is addressed to
listen or talk at the appropriate times.

When the 9100A/9105A is configured as a controller, the
IEEE-488 interface may be opened by opening device
name "fieee". A channel to a group of devices attached to
the bus may be opened by opening device name
"lieee/address list", where address list is a comma-
separated list of IEEE-488 addresses (described in the
Arguments section above). The former form of device
name is principally useful for IEEE-488 bus control via the
ieee command, while the latter form is useful for access by
the print, input, poll, and ieee commands.

Text Files on Disk - to open a channel to a text file on a

disk, specify the file name as the device name. Text files
may be opened:

- as output: this is the default. If the file named by the
device <file name> option already exists, it is truncated to
zero size; otherwise a new (empty) file having the specified
name is created.

- as append: the file named by the device <file name>
option is opened to permit print commands to place new
data after the existing file contents. The file must already
exist or an error will be reported.

open

- as input: the file named by the device <file name> option
must already exist, or an error is reported. The next input
command on the channel will read data starting at the
beginning of the file.

It is an error to have more than one channel open to a
particular file at any given time. It is also an error to open
a text file for both read and write access at the same time or
to open a text file as "update.”

Related Commands:

close, draw, draw ref, draw text, input, input using, poll, print,
print using

For More Information:

b The "Overview of TL/1" section of the Programmer's
Manual.

¢ The "Control Codes for Monitor and Operator's Display,"
appendix of this manual.

¢ The "Operator's Keypad Mapping to TL/1 Input,”

appendix in this manual.

® The "Programmer's Keyboard Mapping to TL/1 Input,”
appendix in this manual.

® The"9100A/9105A Error Numbers" appendix in this
manual.

® The "IEEE-488, 9100A-015" section of the Technical
User's Manual".

open-11

open

open-12

passes

operator
Syntax:

<invocation> passes

Syntax Diagram:

< name > passes

Description:
Tests the termination status of a called program or function. The
passes operator evaluates as true if the called function or
program ends with a "passes” status and as false otherwise.
Arguments:
invocation Program or function call.
Example 1:
if testbus addr $8000 passes then y =1

Example 2:

if testramfull addr $1000, upto $1FFF passes then
x=1

Remarks:

Termination status indicates whether or not a UUT passes
functional tests. Termination status is revised for every
invocation.

passes-1

passes

Termination status can be:

passes represents completion of a test without any
unhandled fault conditions. The UUT is free
from any faults that the test can detect.

fails represents the existence of one or more
unrepaired faults at the end of test execution.

A program that runs to completion without detecting any faults
indicates that the UUT passes. Detection of a fault by the
program (or any programs it calls) affects the termination status
of the program. Any unhandled, unexercised fault condition
causes the program to indicate that the UUT fails. Any fault
condition that is exercised causes the program to indicate that the
UUT fails if the last full iteration of the exerciser detected a fault
and allows the program to indicate a "passes” if the last full
iteration of the exerciser did not detect a fault. The termination
status of a program is accumulated in the program that called it,
so that if any called programs indicated a failure, the calling
program also indicates that the UUT fails.

A fault condition can be handled by a block of statements called
a fault condition handler. The fault condition handler has access
to the arguments of the fault and the global variables of the test
program. When a fault condition handler encounters either a
return statement or its last statement the handler terminates, and
execution resumes at the statement following the fau/t command.

If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the termi-
nation status is "passes”.

A fault command with no fault name or arguments
unconditionally sets the termination status to "fails."

When a refault or a fault command with a fault name is executed,
the termination status is affected by the presence of other
handlers or exercisers for the fault condition.

passes-2

passes

‘ Related Commands:

execute, exercise, fault, fails, handle, if, refault, while

For More Information:

o The "Overview of TL/1" section of the Programmer'’s
Manual.

passes-3

passes

passes-4

Syntax:

podinfo
podinfo
podinfo
podinfo
podinfo
podinfo
podinfo
podinfo
podinfo
podinfo

addr

upto
addrinc
datawidth
datamask
addrmask
read
write

run
busaddr

Syntax Diagram:

podinfo

addr

podinfo
special function

=5

Description:

____upto

| read
L wrlte
|l run

|____addrinc
| datawldth ___|
| .- datamask
| addrmask |

L busaddr

Returns the requested information about the current space.

Options:
addr

upto

Returns the lowest valid address in
the current space. All valid addresses
in the current space are greater than or
equal to this number.

Returns the highest valid address in the
current space. All valid addresses in
the current space are less than or equal
to this number.

podinfo-1

podinfo

addrinc Returns the minimum valid address
increment for the current space. All
valid address increments are multiples
of this number.

datawidth Returns the width, in bits, of the data
words in the current space.

datamask Returns a bitmask with bits set for the
valid data bits in the current space.

addrmask Returns a bitmask of valid address
bits. Note the least significant couple
of bits may not be set if addrinc is
greater than one.

read Returns 1 if read is permitted in the
current space and O otherwise.

write Returns 1 if write is permitted in the
current space and O otherwise.

run Returns 1 if run UUT is permitted in
the current space and 0 otherwise.
busaddr Returns the default bus test address.
Returns:

A number is always returned.
Examples:

function testme (addr, upto)

if addr < (podinfo addr) then fault\return
if addr > (podinfo upto) then fault\return

testramfast addr addr upto upto,
addrstep 2

end function

podinfo-2

podinfo

‘ Related Commands:
setspace, getspace, sysspace, podsetup, sysaddr, sysdata

For More Information:

d The "Overview of TL\1" section of the Programmer’s
Manual.

¢ Supplemental Pod Information for 9100/9105A User's
Manual.

podinfo-3

podinfo

podinfo-4

podsetup

special function
{EEE-LBA
Syntax:
podsetup { <option keyword> <option value> }

Syntax Diagram:

podsetup ____l_ < option keyword > < option value > .]__
-— ’ -

Description:
Accesses the pod to enable or disable reporting of faults directly
sensed by the pod hardware.
Arguments:
Option Option
Keyword Value(s)
'report power' "on" or "off".

Enables or disables reporting of bad
power supply level.

‘report forcing' "on" or "off".
Enables or disables reporting of active
forcing-input lines.

'report intr' "on" or "off".
Enables or disables reporting of active
interrupt lines.

'report address' "on" or "off".

Enables or disables reporting of
undrivable address-output lines.

podsetup-1

podsetup

'report data' "on" or "off".
Enables or disables reporting of
undrivable data bus lines.

'report control' "on" or "off".

Enables or disables reporting of
undrivable control-output lines.

report special’ "on" or "off".
Enables or disables reporting of special
pod errors.

'enable string' "on" or "off".

Enables or disables a pod-dependent
forcing line. The enable phrases all
begin: 'enable ' and end with a pod-
dependent string.

timeout <expression>
Changes the timeout time. The
expression must be numeric.

option <value>
A pod-dependent setup option. The
option and value are defined by the pod
data file.

Example 1:

podsetup 'report power' “on"
Example 2:

podsetup 'enable ready' "off"
Example 3:

podsetup timeout 1000
Example 4:

podsetup 'report intr' "off"™, 'report power' “off™

podsetup-2

podsetup

‘ Remarks:

The podsetup function may be written in keyword notation only.

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

d Supplemental Pod Information for 9100A/9105A Users
Manual.

® The Fluke pod manual for the microprocessor you are
using.

podsetup-3

podsetup

podsetup-4

poll

function
Syntax:

poll channel <channel>, event <condition>
poll (<channel>, <condition>)

Syntax Diagram:

poll channel <channel > , event < condition >

Description:

The poll function allows you to examine the status of a device
for certain conditions. For most conditions, the poll function
returns a 1 if the condition is present, a 0 if it is not.

Arguments:
channel An expression which identifies an open
channel.
condition "input", "output", "blocked", "errors",
"break", or "srq".

"input" - One or more characters are
available on an input channel. If the
input is a file, the end-of-file character
has not been reached. If the specified
channel is not open for input, a 0 is
returned.

"output” - The output buffer is empty
on a serial channel open for output. If
the channel is not open for output or is
not a serial channel, a Q is returned.

poll-1

poll

poll-2

"blocked" - Output to a serial device is
blocked (suspended) waiting for
necessary protocol signals (as in
CTS/RTS).

"errors" - Parity, framing, or overrun
errors have occurred on a serial channel
open for input.

"break" - A break character has been
detected on the serial channel open for
input.

"srq" - (IEEE-488 channels only) If the
channel is open on the IEEE-488
interface, then the poll command
returns 1 if a device is asserting SRQ
(Service Request) on the IEEE-488
bus, and 0 if no device is asserting
SRQ. If the channel is open on a group
of devices, a serial poll is performed on
the first device in the address list, and
the resulting serial poll status byte is
used as the return value of the poll
command. (The 9100A/9105A must be
configured as a controller in order to
conduct a serial poll.)

If an I/O error occurs while attempting to process the poll
command (for example, a timeout error occurs while attempting
to perform a serial poll on an 1EEE-488 device), then the
"io_error" fault is raised with numeric argument err_num
containing the 9100A/9105A error number and string argument
err_msg containing a description of the error. For example, the
following is a TL/1 code fragment for an io_error fault handler:

handle io_error(err_num, err_msg)

declare numeric err_num

declare string err msg

print using "Error ?#:?#", err num, err_msg
end handle

poll

‘ Returns:

1, if condition exists.

0, if condition does not exist.

Note: The "srq" condition can return the result of performing a
serial poll, as discussed above.

Example:
loop while (poll channel ichan, event "input”) = 0
wait time 1000 ! wait for input
end loop

Related Commands:
open

‘ For More Information:

® The "Overview of TL/1" section of the Programmer’s

Manual.

¢ The "9100A/9105A Error Numbers" appendix in this
manual.

° The "IEEE-488, 9100A-015" section of the "Technical
User's Manual".

poll-3

poll

poll-4

pollbutton
function

Syntax:
pollbutton ()

Syntax Diagram:

polibutton)

Description:

Determines if any I/O module or probe button presses are
currently queued.

Returns:
1, if an I/O module or probe button is queued.
0, if the condition does not exist.

Example 1:

! Poll for any I/0 module or probe button
sts = pollbutton ()
if (sts = 1) then
readbutton ()
end if

Remarks:
When using the READBUTTON TL/1 function, you may want
to know before the function is executed, whether or not an I/O
module or probe button has been pressed. The POLLBUTTON
“TL/1 function determines if there is at least one queued button
press from the I/O module or the probe.
Related Commands:

clip, probe

polibutton-1

pollbutton

For More Information: ‘

d The "Overview of TL/1" section of the Programmer’s
Manual.

polibutton-2

polluut
function

Syntax:

polluut ()

Syntax Diagram:

polliuut)

Description:

Determines whether the pod is executing instructions in the
RUNUUT mode.

Returns:
1, if the pod is executing instructions in RUNUUT mode.

0, if the pod is not executing instructions in RUNUUT mode.
This could be caused by any of the following reasons:

¢ The pod wasn't put into RUNUUT mode.
® The pod has halted RUNUUT execution after reaching a

breakpoint.
® A data compare equal (DCE) condition has occurred in an
I/O module.
Examples:

program look

runuut addr $FFFFFF0
compare device "/modl", patt "11011101"

(example is continued on the next page)

polluut-1

polluut

loop while polluut () =1
execute io_stimulus ()

end loop

end program
Related Commands:

compare, runuut, waituut

For More Information:

!
!
!
!

a stimulus routine
you have written to
exercise the I/0
ports of your UUT

i The "Overview of TL/1" section of the Programmer's

Manual.

polluut-2

pow
function

Syntax:

pow num <expression 1>, power <expression 2>
pow (<expression 1>, <expression 2>)
Syntax Diagram:

pow num < expression 1 >

» POWer < expression 2 >

Description:

Computes the value of one argument raised to the power of the
other argument.

Arguments:
expression 1 The floating-point value to raise
by the power argument value.
expression 2 The floating-point power
argument value.
Returns:

A floating-point number.

Examples:
f = pow num 3.0, power 3.0 ! result is 27.0
f = pow (6.0, 1.0/3.0) ! result is cube root

' of 6.0

pow-1

pow

Remarks:

If any of the following is true, an error will result:
®

Both expression 1 and expression 2 are equal to 0.0.

¢ The expression 1 value is negative.

Also, overflow errors may occur for certain ranges of argument
values which cause excessively large returned values.

Related Commands:

log

pow-2

pretestram
function

Syntax:

pretestram addr <addr>, upto <upto>, mask <mask>,
addrstep <addrstep>

pretestram (<addr>, <upto>, <mask>, <addrstep>)

Syntax Diagram:

pretestram addr < addr >

» upto <upto>

, mask <mask > , addrstep «<addrstep >

Description:

Performs a very fast pretest of RAM to find any simple faults
such as a totally dead memory chip, stuck address lines, or stuck

data lines.
Arguments:
addr Starting address.
upto Ending address.
mask Bit mask for data bits to test.
addrstep Address increment.
Example:

if pretestram addr 0, upto $FFFE, mask SFFFF,
addrstep 2 passes then
! If pretestram passes, do your customized
! test (or Pod Quick test) here.

(example is continued on the next page)

pretestram-1

pretestram

If your test finds an error, then execute .
diagnoseram, using the values for

faultaddr, expdata, and data discovered by

your program.

else
! No need to program anything. When
! pretestram fails, it has full diagnostics.
end if
Remarks:

The action of prestestram is included in testramfast and
testramfull.

Related Commands:
diagnoseram, testramfast, testramfull

For More Information:

b The "Overview of TL/1" section of the Programmer’s
Manual.

pretestram-2

print
statement
Syntax:

print [<expression list>]
print [on <channel>] [, <expression list>]

Syntax Diagram:

print

L___ < expression list > _]

on «< channel >

Description:

Outputs character strings and numbers to a character-oriented
output device.

Arguments:
channel A numeric expression that identifies a
channel to a device open for output.
expression list One or more expressions for output

separated by commas.
Example 1:

print "text string™ ! output to operator's display
! with no extra spaces

Example 2:
print on chl, "text string = ", ts

! output string followed by
! value of ts in decimal

print-1

print

Remarks:

print-2

Before using the print command, the output device must be
opened for output.

The print command without an "on" expression prints to the
first device opened for output, append, or update. An error
occurs if no device has been opened or if the device has
subsequently been closed.

If an expression is a string, it is printed with no surrounding
spaces. If an expression is numeric, it is printed in decimal with
no surrounding spaces. If an expression is floating-point, it is
printed in scientific notation format with six digits of precision
following the decimal point.

The print command adds the termination character (which
usually defaults to newline) associated with the channel after
printing the last expression. A print command without any
expression list prints a termination character (if any).

If the print channel is a serial port opened in buffered mode, the
newline character is actually printed as either a carriage return or
as a carriage return plus a line feed. This definition can be
changed by pressing the SETUP MENU key and then the
PORT! or PORT2 softkeys found on the operator keypad.
Output is not actually sent to a buffered serial port channel until a
newline character is printed.

If the print channel is opened on either the IEEE-488 interface or
a device attached to the IEEE-488 interface, EOI is automatically
asserted with the termination character. In addition, if "EOI
Enable” mode is turned on (see the ieee command for details),
EQI is asserted with the last byte printed by the print command
(which is not always a termination character, since the channel
may have no associated termination character).

print

If an I/O error occurs during an attempt to process a print
command (for example, a timeout error during an attempt to
print to an IEEE-488 device), then the io_error fault is raised,
with numeric argument err_num containing the 9100A/9105A
error number, and string argument err_msg containing a
description of the error. For example, the following is a TL/1
code fragment for an io_error fault handler:

handle io error(err num,err msqg)

declare numeric err num

declare string err msg

print using "Error ?#:?#",err num,err_msg
end handle

Related Commands:
open, print using

For More Information:

d The "Overview of TL/1" section of the Programmer'’s

Manual.

¢ The "Control Codes for Monitor and Operator's Display,"
appendix of this manual.

¢ The "9100A/9105A Error Numbers" appendix in this
manual.

g The "IEEE-488, 9105-015" section of the Technical
User's Manual.

print-3

print

print-4

print using
statement
Syntax:

print using <format string> [, on <channel>]
[, <expression list>]

Syntax Diagram:

print using < format string >

L , on < channel > _l L » < expression list > _]

Description:

Outputs strings and numbers to a character-oriented output
device in a specified format.

Arguments:
format string A string that defines the output format.
channel A numeric expression that identifies a
device open for output.
expression list One or more expressions for output

separated by commas.
Example 1:

print using "# # ## ####v, 1, 2, 10, 110
! outputs the string:
t'12 10 110

Example 2:
print using "first &&&&&&&&, second %%%%, third
is #@@ee", SFrF, $10, 110

! outputs the string:
! first 11111111, second 0010, third is 0110

print using-1

print using

Example 3:

print using "#######FEF FEFFFFHHE#\n1", "hello™,
"world"
! outputs the string:
! hello world

Example 4:

program squares
print "Table of Squares\nl"
! One new-line is generated by print,
! the other by the literal new-line.
loop for i = 1 to 10
print using "#Q@ squared is ##Q@\nl"™, i, i*i
end loop
end squares
outputs the following text:
Table of Squares

1

1

!

!' 1 squared is 1
! 2 squared is 4
! 3 squared is 9
! 4 squared is 16
' 5 squared is 25
! 6 squared is 36
' 7 squared is 49
! 8 squared is 64
!' 9 squared is 81
! 10 squared is 100

Example 5:

print using "###~*~ ###~~"EEEEE\nl", 3.2, 3.2
! outputs the string:
! 003 3.200E+00

Example 6:
print using "#~**.~~*\nl", £
! with
! argument: outputs the string:
!
! 3.2 003.200
! 1000.3 1000.300
! -40.2359 -40.236

print using-2

print using

Example 7:

print using "?# 2% 2@ 2& ?2”\nl", $32, $32, $32,
$32, 50.0

! outputs the string:

! 50 32 50 110010 5.000000E+01

Remarks:

The print using command allows for highly structured or
columnized output by use of format specifications contained in
format strings. Format strings specify formatted output through
combinations of literal characters and format pictures. There
must be a format picture for every expression. It is a run-time
error if there are more format pictures in the format string than
expressions in the expression list.

If no channel is specified in the print using command, output is
directed to the first device opened for output, append, or update.

A print using command does not automatically output a
termination character at the end of the output. To print a new-
line character with the print using command, include "\nl" in the
format string.

Characters in the format string which are not part of a format
picture are simply printed as given in the format string.

If the print channel is a serial port opened in buffered mode, the
newline character is actually printed as either a carriage return or
as a carriage return plus a line feed. This definition can be
changed by pressing the SETUP MENU key and then the
PORT]1 or PORT?2 softkeys found on the operator's keypad.
Output is not actually sent to a buffered serial port channel until a
newline character is printed.

If the print channel is opened on either the IEEE-488 interface or
a device attached to the IEEE-488 interface, EOI is automatically
asserted with the termination character (if any). In addition, if
the 'EOI Enable' mode is turned on (see the ieee command for
details), then EOI is asserted with the last byte printed by the
print using command.

print using-3

print using

If an ¥/O error occurs while attempting to process a print using
command (for example, a timeout error while attempting to print
to an IEEE-488 device), the io_error fault is raised, with
numeric argument err_num containing the 9100A/9105A error
number and string argument err_msg containing a description of
the error. For example, the following is a TL/1 code fragment
for an io_error fault handler:

handle io error (err_num, err msg)
declare numeric err num
declare string err msg
print using "Error 2#: 2#", err_num,
err msg
end handle

A format picture is a string of one or more format characters; a
format string contains zero or more format pictures. Format
pictures are one of two types: fixed-width and variable-width.
Fixed-width format pictures output data in columnized format,
while variable-width format pictures output data using the
minimum number of columns needed to express the data. (The
result for variable-width pictures is the same as that achieved
with the print command, except that it is possible to control the
radix when printing numeric values.)

print using-4

print using

Fixed-Width Formatted Output

A fixed-width string format picture is a string of one or more "#"
characters, where each "#" character represents one character in
the string data to be printed.

A fixed-width numeric format picture is a string of zero or more
optional digit places (leading "#" characters) followed by one or
more required digit places, which also determine the radix
(hexadecimal, decimal, or binary) for numeric data.

A fixed-width floating-point format picture is a string of zero or
more optional digit places (leading "#" characters), followed by
a required digit sequence, optionally followed by the string
"EEEEE" to denote the exponent. If the exponent sequence is
included, the number will be printed in scientific notation;
otherwise, it will be printed in fixed-point notation. For both
notations, the required digit sequence contains "A" characters. In
addition, fixed-point notation allows at most one decimal point
character in the sequence of "A" characters to specify the position
of the decimal point. (Note: At least one "A" character must
precede the decimal point.)

The fixed-width format picture characters are defined below:
Symbol Description

An optional digit place for numeric and
floating-point formats or a character place for
string formats. In numeric formats, if the
place is a non-significant zero, a space is
printed. When the "#" symbol appears as the
last position of a numeric format picture, it is
a required digit place and defines the radix to
be decimal.

% A hexadecimal digit for numeric format
pictures. If this digit is a non-significant
Zero, a zero is printed.

@ A decimal digit for numeric format pictures.

If this digit is a non-significant zero, a zero is
printed.

print using-5

print using

& A binary digit for numeric format pictures. If
the digit is a non-significant zero, a zero is
printed.

A Required digit place for floating-point

numbers. A sequence of "A" characters may
contain a single decimal-point character
(which must be preceded by at least one "A"
character), or may be followed by a fixed
sequence of five "E" characters denoting the
exponent (in which case the sequence of "A"
characters may not include a decimal point).

When a numeric value is printed into a fixed-width format
picture, the right-most digit place provides-the radix in which the
number is printed. The character "%" in the right-most position
causes the number to be printed in hexadecimal. The characters
"#" and "@" cause the number to be printed in decimal. The
character "&" causes the number to be printed in binary. If there
are fewer characters in the format picture than there are
significant digits in the number, a run-time error occurs. If there
are fewer significant digits in the number than there are format
picture characters, the number is right-justified in the format
picture.

For example, the expression "10" will be printed as " A" with
"#%" as the format picture, but it will be printed as "0A" with
"%%" as the format picture.

When a fixed-width format picture is used to print a string, the
string is left-justified in the picture. If there are more characters
in the string than in the picture, a run-time error occurs. If there
are fewer characters in the string than in the picture, the extra
picture characters are replaced by spaces. Only the "#" character
may represent string characters in a format picture. For example,
the string "data" will be printed as "data " when "##HHHH" is
used as the format picture.

print using-6

print using

Variable-Width Formatted Output

Like a fixed-width format picture, a variable-width format
picture describes the format for a single data value. The
difference is that a variable-width format picture prints as many
characters as are necessary to express the corresponding value.
The result for each value is identical to what is generated by the
print command, except that it is possible to specify the radix to
use for printing a numeric value.

A variable-width format picture consists of a single "7"
character, followed by a single character denoting the picture
type.

The following special picture type characters are defined:

Symbol Description

Print a variable-width string or decimal
number.

% Print a variable-width hexadecimal number.

@ Print a variable-width decimal number.

& Print a variable-width binary number.

A

Print a variable-width floating-point number
(in scientific notation with six digits of
precision following the decimal point).

? Print a single "?" character.
If the picture type character is not one of the above, then it will

be printed literally (the same as if it had not been preceded by a
"?" character).

Related Commands:

open, print

print using-7

print using

For More

print using-8

Information:

The "Overview of TL/1" section of the Programmer’s
Manual.

The "9100A/9105A Error Numbers" appendix in this
manual.

The "IEEE-488 9105-015" section of the Technical User's
Manual.

probe

function
Syntax:

probe ref <ref pin>
probe (<ref pin>)
Syntax Diagram:

probe ref < refpin>

Description:

Prompts the operator (on the operator's display) to probe the
specified pin and press the ready button on the probe.

Arguments:

ref pin Name of pin to probe.
Example:

probe ref "Ul-1"
Remarks:

This command is used to verify that the probe is set up for a
measurement. The 9100A/9105A waits until the probe button is
pressed before continuing on past this command.

For More Information:

b The "Overview of TL/1" section of the Programmer’s
Manual.

probe-1

probe

probe-2

program
statement block
Syntax:

program <program name> [(<argname> {, <argname>}))]

Syntax Diagram:

program < program name >

—[._ < argname > ._J
T ILT

Description:

Specifies the beginning of a program block.

Arguments:
program name Name of the program defined on the
lines following the program statement.
argname Name of an argument for this program.
Example 1:

program test8

end program

Example 2:

program my prog (a,b,c)

end my prog

program-1

program

Example 3: ‘

program 'my.file’ ! Single quotes allow the
. ! use of a period in
! the program name.

end program
Remarks:

The first statement of every TL/1 program must be a program
statement. The program statement contains the program name
and the names of any arguments passed to the program. The
program block must be terminated with an end program
statement or an end statement containing the same program
name.

The name in the program and end statements must be the same.
A valid program name contains from 1 to 10 characters and
consists of only letters, numbers, and underscore characters (or
periods, if the program name is enclosed in single quotes). A
program name cannot be the same as the name of a built-in
function.

Although TL/1 requires that a program name be spelled exactly
the same wherever it appears, the case of letters is ignored when
a program is looked up on the disk. Thus it is not possible to
define two program names that differ only in case (such as
PROGT1 and progl).

The scope of a program name is the UUT directory containing it
plus the program library. Therefore, a program can call any
other program in the same UUT directory, but not in another
UUT directory.

The program argument list consists of one or more argument
names, separated by commas; the argument list is enclosed in
parentheses. The order of the names in this list is the same order
in which the values for these arguments must be listed in
positional notation calls to this program. If any arguments have
default values, these values are assigned in the subsequent
declaration blocks.

program-2

program

Program arguments may not be declared as arrays nor as global
or persistent variables.

Declarations consist of any and all declaration blocks, function
definition blocks, handler definition blocks, and exerciser
definition blocks.

Related Commands:
declare, end, execute, exercise, function, handle, return

For More Information:

The "Overview of TL/1" section of the Programmer’s
Manual.

program-3

program

program-4

pulser
function

IEEE-LAH
Syntax:
pulser mode <mode name>
pulser (<mode name>)
pulser ()

Syntax Diagram:

)

pulser __I_ mode < mode name >

Description:

Turns on the probe in a pulser mode synchronized as specified
by the sync command. The probe can pulse low, high, or toggle
alternately high and low.

Arguments:
mode name "off", "high", "low", or "toggle".
(Default = "off™)
Example:

pulser mode "toggle”

Remarks:
When the probe threshold is set to RS-232, a low level is pulsed
to O volts. Since this is not a valid RS-232 low level, the green
light of the probe will not be illuminated.

Related Commands:

sync

pulser-1

pulser

For More Information: ’

b The "Overview of TL/1" section of the Programmer’s
Manual.

pulser-2

rampaddr
function

iEce-LAAa
Syntax:
rampaddr addr <address>, mask <mask>
rampaddr (<address>, <mask>)

Syntax Diagram:

rampaddr addr <address > , mask <mask >

Description:

Performs a series of read operations, each at a different address.
The number of reads and the values of the addresses are
determined by the specified mask.

Arguments:

address Address.

mask Hexadecimal mask of ramp bits.
Example 1:

rampaddr addr $1000, mask 3

The 9100A/9105A performs the following:

read addr $1000
read addr $1001
read addr $1002
read addr $1003

rampaddr-1

rampaddr

Example 2: ‘

rampaddr addr $123B, mask $42
! 123B hexadecimal = 0001 0010 0011 1011 binary
! 42 hexadecimal = 0000 0000 0100 0010 binary

The 9100A/9105A performs the following:

read addr $1239 ! 0001 0010 0011 1001 binary
read addr $123B ! 0001 0010 0011 1011 binary
read addr $1279 ' 0001 0010 0111 1001 binary
read addr $127B ! 0001 0010 0111 1011 binary

Remarks:

In the second example, the mask (42 hex) specifies the two
address bits, 6 and 1. Four read operations are performed (2
raised to the power of 2.) The bits specified in the mask are
ramped from all zeros to all ones with the right-most bit (bit 1)
considered the LSB and the left-most bit (bit 6) considered the
MSB of the ramped bits. The other address bits remain
unaltered. It is much faster to ramp in groups of smaller masks
(FO, F, FOO) than to ramp one large mask (FFF), although the
larger mask provides more complete coverage.

For More Information:

g The "Overview of TL/1" section of the Programmer’s
Manual.

rampaddr-2

rampdata
function

iEcE-LBa
Syntax:
rampdata addr <address>, data <data>, mask <mask>
rampdata (<address>, <data>, <mask>)

Syntax Diagram:

rampdata addr < address > , data <dala> , mask <mask >

Description:

Performs a series of write operations at the specified address.

Arguments:

address Address.

data First data value.

mask Hex mask of the data bits to be ramped.
Example:

rampdata addr $123B, data $25, mask $43
! data 25 hex = 0010 0101 binary
! mask 43 hex = 0100 0011 binary

The system performs eight writes as shown below:

write addr $123B, data $24 ! 0010 0100
write addr $123B, data $25 ! 0010 0101
write addr $123B, data $26 ! 0010 0110
write addr $123B, data $27 ' 0010 0111

(example is continued on the next page)

rampdata-1

rampdata

write addr $123B, data $64 ! 0110 0100
write addr $123B, data $65 ! 0110 0101
write addr $123B, data $66 ' 0110 0110
write addr $123B, data $67 !t 0110 0111

Remarks:

You specify the original data and the data bits to be ramped. In
the previous example, the mask (43 hex) specifies the three data
bits 6, 1 and 0. This means that there are eight write operations
(2 raised to the third power). The data bits are ramped from all
zeros to all ones with the right-most bit (bit) considered the
LSB and the left-most bit (bit 6) considered the MSB of the
ramped bits. The other data bits remain unaltered.

The following command performs a ramp for an eight-bit pod
that is equivalent to the 9000-series RAMP @ 1122 command:

rampdata addr $1122, data 0, mask SFF

This statement performs 256 writes (data 00-FF) at address
1122 on a 16-bit pod.

Similarly, the following command performs 65536 writes (data
0000 - FFFF) at address 1122:

rampdata addr $1122, data 0, mask SFFFF

For More Information:

1 The "Overview of TL/1" section of the Programmer’s
Manual.

rampdata-2

random
function

Syntax:
random [seed <expression>]

random ([<expression>])

Syntax Diagram:

0

random l seed <« expression > I

Description:

Produces pseudorandom sequences of numbers.

Arguments:
seed Providing this optional value changes
the sequence of numbers.
(Default = $FFFFFFFF)
Returns:

Returns a pseudorandom 32-bit numeric value.
Example:

loop for i = 1 to 100 ! print 100 random numbers
print random()
end loop

random-1

random

Remarks: ‘

The seed argument can change the sequence of pseduorandom
numbers that are generated by the random function. Setting the
seed to zero begins a new sequence of numbers based on the
current time of day.

Setting the seed to any number other than zero or $FFFFFFFF,
begins a new sequence based on that number. Using the same
number again generates the same sequence of numbers.

The seed value can also be set to $FFFFFFFF (Default), which
returns the next number in the current pseudorandom sequence.

The sequence of numbers returned by random has the
appearance of randomness, but no specific property of the
sequence is guaranteed. The sequences of numbers generated
by random may change in subsequent software revisions to
provide more nearly random sequences.

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

random-2

read
function

Syntax:
read addr <address>

read (<address>)

Syntax Diagram:

read e addr < address >

Description:

Returns the data located at the specified address.
Arguments:

address Address from which to read data.
Returns:

The data read at the specified address.
Example 1:

data2 = read addr here

! Reads the data at the address specified by

! the value of the user-defined variable here
! and stores it in the variable data2.

Example 2:

data2 = read (here)
! The positional notation equivalent
! of the keyword notation in the above
! example.

read-1

read

Example 3:

datal = read ($8FFO0) ! Reads the hex data at
! address BFF0 into
! the variable datal.

For More Information:

i The "Overview of TL/1" section of the Programmer’s

Manual.

read-2

readblock
function

Syntax:

readblock file <file name>, format <format>,
addr <address 1>, upto <address 2>

readblock (<file name>, <format>, <address 1>,
<address 2>)

Syntax Diagram:

readblock flle < filename > , format < format>

addr <address 1> , upto <address?2>

Description:

Reads the data from the specified address range and stores this
data in the specified text file.

Arguments:

file name The name of the file in which to store
the data. If a full path name is not
specified, the data will be stored in the
specified file in the current UUT
directory.

format The ASCII format in which the data
was previously stored. Either
"motorola” or "intel".
(Default="motorola".)

address 1 Start address.

address 2 End address.

readblock-1

readblock

Example 1:

readblock file "testlcd", format "motorola",
addr $7000, upto $7FD4

Example 2:
readblock ("pgml"™, "motorola"™, $1000, S1FFF)
Example 3:

readblock file "/HDR/testdata", format "motorola",
addr $7000, upto $7FD4

Related Commands:
loadblock, writeblock

For More Information:

. The "Overview of TL/1" section of the Programmer's
Manual. .

readblock-2

readbutton

‘ function
|
Syntax:
readbutton mode <mode>
readbutton (<mode>)
readbutton ()
Syntax Diagram:
readbutton _____ | mode (<) mode > 1
Description:
. Waits for you to press the I/O module or probe button.
Arguments:
mode "beep" or "nobeep".
Default = "beep"
Returns:

The name of the device that is selected.

Example 1:

! Wait for any I/O module or probe button
device = readbutton ()

Example 2:

! Wait for probe button with no beep
device = readbutton ("nobeep")
! value of device variable is now "/probe™

readbutton-1

readbutton

Example 3:

! Wait for I/O Module button with beep
device = readbutton mode "beep"
! value of device variable is now "/mod4B"

Remarks:

It is often inconvenient to continue pressing the <RETURN>
key on the programmer's keyboard or the <ENTER/YES> key
on the operator's keypad while probing points on a UUT. The
readbutton command delays program execution until the I/O
module or probe button can be pressed.

When the proper button is pressed, the function returns with the
name of the device.

Related Commands:
clip, probe

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

readbutton-2

readdate
function

iEEe-LB0
Syntax:
readdate time <expression>
readdate (<expression>)

Syntax Diagram:

readdate time < expression >

Description:

Returns a string which contains the date. To access the current
date, the expression should be the value returned from the
systime function.

Arguments:
expression A number returned by the systime
function that represents a number of
elapsed seconds.
Returns:

A string representing a date.
Example:

t

systime ()

X = readdate time t ! Stores the date
! from variable t in string
! format in the variable X
print readdate (t) ! Prints the data from

! variable t in string format

readdate-1

readdate

Remarks:

The readdate function returns a string containing the date in the
format:

YYYYMM/DD
where YYYY = year, MM = month, and DD = day.
For example, the string "1986/07/06" represents July 6, 1986.
Related Commands:
readtime, systime

For More Information:

. The "Overview of TL/1" section of the Programmer's
Manual.

readdate-2

. Syntax:

readmenu
function

readmenu channel <channel expression>, identifier

<menu name>
<style>] [,

<ylocation>]

Syntax Diagram:

name <terminal name>] [, style

xorg <xlocation>] [, yorg

height <height>]

readmenu __ channel < channel expression > __ , Identifler < menu name > — ...

l__ , name < terminal name > ._] L , Style < style > _l

L , Xorg «< xlocation > _I L , Xorg < ylocation > _] L. , helght < height > ._l

Description:

Used to display and read from a menu defined by the define

menyu command.

' Arguments:

channel expression

menu name

terminal name

A numeric expression to define a
channel opened to read key presses
used to make menu selections. Note
that /terml and /term2 are also
considered windows.

A menu name as defined by the define
menu command. If the menu does not
exist, readmenu returns an empty string

).

The name of the display device to draw
the menu on. The only name allowed is
"fterm2" (this is also the default value).

readmenu-1

readmenu

style 0 - The menu is a non-button menu
(Default).

1 - The menu is a button menu.

xlocation A numeric expression that defines the
horizontal location of the upper left-
hand comer of the menu in characters.

If xorg is not specified, the default is to
center the menu on the display.

ylocation A numeric expression that defines the
vertical location of the upper left hand
comer of the menu in characters.

If yorg is not specified, the default is to
center the menu on the display.

height A numeric expression that defines the
maximum height of the menu in
characters. If not specified, it defaults
to the size required to list all the menu
items.
Returns:
A string indicating which menu item is selected.

Example 1:

response = readmenu channel channel, identifier
"Ml "
! Read from menu M1

Example 2:

response = readmenu channel channel, identifier
IIM2 ”
! Read from menu M2

readmenu-2

readmenu

‘ Example 3:

! Pop up a menu when the user pushes a key. On
! subsequent key presses, start the menu at

! the last place the user was on the menu. If
! the user makes no selection, exit the

! program loop. This example assumes the user
! has written a program called doaction which
! causes the action indicated by the menu

! selection to be done.

keyboard = open device "/terml", as "input", mode
"unbuffered”

response = "M1"

notdone =1

loop while notdone

if (poll channel keyboard, event "input") then
response = readmenu channel keyboard,
identifier response
if response = "" then
notdone = 0

else
doaction action response
end if
end 1if
end loop

Remarks:

Menus are drawn in two styles, button or no button. In the no
button style, a menu is simply a list of selectable items. In the
button style, the menu is drawn as a collection of buttons with a
box drawn around each menu item.

The user can type keys to make a menu selection if keys were
defined for that menu. The keys defined are displayed in front
of each menu item.

There is also a menu cursor displayed in a menu. The menu
cursor is shown by inversing the active field. To select the item
at the menu cursor enter a carriage return. To select a submenu
at the menu cursor (submenus are drawn with a "->" appearing
in the right hand side of the menu item) enter a carriage return or
a right arrow key. To move the menu cursor down, press the

readmenu-3

readmenu

down arrow key, and to move the menu cursor up, press the up
arrow key. The height argument specifies the maximum height
of the menu on the screen. If the menu items will not fit in the
height specified, the menu becomes a scrollable menu. This is
indicated by the menu having the word "More" and a down
arrow appear on the bottom border. Pressing the cursor down
key on the last visible field causes the menu to scroll down. The
word "More" and an up arrow now appears on the top border to
indicate the menu may be scrolled up by pressing the up arrow
on the top most visible field.

If a selection is made by the user, a string indicating that
selection is returned. That string is of the form MMM1-
11/ MMM2-IT12/MMM3-1111, where II1I is the selection made
on menu MMM3, a submenu of menu MMM2 which is a
submenu of MMML. If the size of the string is larger than 255
characters, a string overflow error will be generated.

A menu can be forced to start up at a particular selection or
submenu by passing the menu name of a particular selection.
The menu name is of the form returned when a menu selection is
made. For example, to start a menu in a submenu selection,
pass menu as "MMM1-II1/MMM2-IIIT".

If the menu style was 1 (indicating buttons), readmenu will
accept escape sequences from a touch-sense interface. The
escape sequence recognized is "\IB[>2;xxxn". The xxx is the
location on the screen, assuming the screen is divided into 10
columns by 12 rows. The locations are numbered from 000 (the
upper left corner) through 119 (the lower right corner).

The device is a channel opened for reading by the open
command. It is recommended that this channel be opened as
"input” mode "unbuffered". If the channel is buffered, you will
have to type line terminators to cause menu action and this is
probably undesirable. This channel will be flushed before
characters are read if it is not a disk file.

readmenu-4

readmenu

xorg and yorg specify the position of the menu on the screen in
character cells in the default font. If xorg is missing, xorg will
default to center the menu horizontally, and if yorg is missing,
yorg will default to center the menu vertically.

Related Commands:
define menu, remove menu, open

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

readmenu-5

readmenu

readmenu-6

readout
function

Syntax:
readout device <device list>
readout (<device list>)

readout ()

Syntax Diagram:

()
readout _[device <devicelist1

Description:

Reads response data from the I/O module or the probe, and
stores it in the system's memory. The response data is then
available via the sig, count, and level commands.

Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe™)
Example 1:

mod = clip ref "u3", pins 40

arm device mod
rampdata addr 0, data 0, mask SFF
rampdata addr 0, data 0, mask SFF00
readout device mod

readout-1

readout

Example 2:

arm device "/modl, /mod2"

readout device "/modl, /mod2"

Remarks:
The readout command terminates signature gathering started by
the arm command. Therefore arm and readout should be
considered as beginning and ending statements for a TL/1
response-gathering block.

Related Commands:
arm, checkstatus, clip, count, level, sig, stopcount, sync

For More Information:

d The "Overview of TL/1" section of the Programmer's
Manual. ’

readout-2

readspecial
function

{Eck-LA0
Syntax:
readspecial addr <address>

readspecial (<address>)

Syntax Diagram:

readspeclal addr < address >

Description:
Returns the data located at the specified virtual address. This
allows access to the virtual addresses that, in some pods, are
used for special operations. This command should only be used
when you know that the normal read command does not provide
the required special operation.

Arguments:
address Address from which to read data.

Returns:
The data at the specified address.

Example 1:

value = readspecial addr $F0000018

Example 2:

value = readspecial ($F0000018)

readspecial-1

readspecial

Remarks:

Incorrect use of this special-purpose command can place the pod
and the 9100A/9105A mainframe in inconsistent states.

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

® The Fluke pod manual for the microprocessor you are
using.

readspecial-2

readstatus
function

Syntax:
readstatus ()

Syntax Diagram:

readstatus 0)

Description:
The readstatus command reads the values on the status lines of
the pod. To interpret the status data, refer to the pod's
operator's manual. As with the read function, a value is
accessed by assigning the function invocation to a variable.
Returns:
The status word.
Example:

status = readstatus{() ! the variable status is
! loaded with data from
! the function readstatus

Related Commands:

writecontrol

For More Information:

d The "Overview of TL/1" section of the Programmer's
Manual.

readstatus-1

readstatus

readstatus-2

readtime
function

{EEE-LAA
Syntax:
readtime time <expression>
readtime (<expression>)

Syntax Diagram:

roeadtime time < expression >

Description:

Returns a string containing the time. To access the current time,
the expression should be the value returned by the systime

function.
Arguments:
expression A number returned by calling systime,
or a number representing elapsed
seconds.
Returns:

A string representing a time.
Example 1:
t = systime ()
print "the time is ", readtime time t

! prints “the time is 15:36:58 (or
! whatever time the value of t indicates)

readtime-1

readtime

Example 2:

start = systime ()
testuut
print "TestUUT time ", readtime (systime () -
start)
! prints: "TestUUT time 00:05:03" if,
! testuut took five minutes and three
! seconds to execute.

Remarks:

The readtime function returns a string containing the time in the
format:

HH:MM:SS
where HH = hours, MM = minutes, and SS = seconds.
For example, the string "15:36:58" represents 36 minutes and 58
seconds past 3 o'clock in the afternoon. In this format, a list of
strings ordered by the ASCII value of the characters from left to
right is also ordered chronologically.

Related Commands:

readdate, systime

For More Information:

d The "Overview of TL/1" section of the Programmer's
Manual.

readtime-2

readvirtual
function

Syntax:

readvirtual extaddr <extended address>, addr
<address>

readvirtual (<extended address>, <address>)

Syntax Diagram:

readvirtual extaddr « extented address > , addr < address >

Description:

Readvirtual is a complete replacement for the obsoleted
readspecial command. Returns the data located at the specified
virtual address. This allows access to the virtual addresses that,
in some pods, are used for special operations. This command
should only be used when you know that the normal read
command does not provide the required special operation.

Arguments:
extaddr Upper 32-bits of virtual address.
addr Address from which to read data.
Returns:

The data at the specified address.

Example 1:

value = readvirtual extaddr 0, addr $rF0000018

Example 2:

value = readvirtual (0, $F0000018)

readvirtual-1

readvirtual

Remarks: ‘

Incorrect use of this special-purpose command can place the pod
and the 9100A/9105A mainframe in inconsistent states.

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

d The Fluke pod manual for the microprocessor you are
using.

readvirtual-2

readword
function

{iEEE-LB0
Syntax:

readword [device <I/0 module name>] [, word <word
number>] [, mode <mode>]

readword (<I/0 module name> , <word number> , <mode>)

Syntax Diagram:

0

readword I device < /O module name > ___ I

| . word < word number> __|
| mode < mode>

> ’ <
- -«

Description:
Allows a group of I/O module pins to be read as a single group
of values.
Arguments:
1/O Module name I/O module name ("/mod1", "/mod2",
"/mod3", or "/mod4").
(Default = "/mod1")
word number The number of the word group. Valid
values are from 1 through 5.
(Default = 1)
mode The mode in which to read the word.

Valid values are "now" or "stored".
(Default = "now")

readword-1

readword

Returns: .

A string representing the state of the pins specified by the
setword function.

Example 1:

! Read the current level of pins 1-4 of I/0 Module #1
setword device "/modl™, word 1, as pins "1 2 3 4"
binstr = readword device "/modl", word 1, mode "now"

Example 2:

! Read the stored level of pins 1-4 of I/O Module #1
clockfreq device "/modl", freqg "“1MHZ"
edgeoutput device "/modl", start "at_vectordrive"
sync device "/modl"™, mode "capture"
syncoutput device "mod/1l", mode "intfreq"
setword device "/modl", word 1, as pins " 1 2 3 4"
vectorload device "/modl®, file "demo"
arm device "/modl"
vectordrive device "/modl", startmode "now" .
readout device "/modl"
binstr = readword device "/modl", word 1, mode "stored"

if instr(binstr,”*") = 0 then
wordone = val(binstr, 2)
else
wordone = 0
end if
Remarks:

In the "now" mode, the readword function mimics the operation
of the INPUT WORD operation from the front panel. The
current logic level of the pins in the word are grouped into a
string. In the "stored" mode, the readword function takes the
clocked level history information from the values that are stored
in memory from the latest readout command.

A pin level of HIGH is represented as a logic "1". A pin level of
LOW is represented as a logic "0". Any other pin level is
represented as an "*", so use the level function to determine the

actual level. ‘

readword-2

readword

‘ Setword can make pin grouping assignments. Groupings may
be made from 1 to 40 pins.

Related Commands:
setword, writeword

For More Information:

M The "Overview of TL/1" section of the Programmer’s
Manual.

readword-3

readword

readword-4

Syntax:

refault
statement

refault [<fault condition>]

Syntax Diagram:

refault

l_ < fault name >

Description:

| <argument> __ <value> _|

. 4

Pass a fault condition to the caller for further processing.

Arguments:

fault condition

argname

argvalue

Example 1:

handle pia_out

refault

end handle

Name of the fault condition to be
raised.

Name of an argument.

An expression which provides the value
for an argument.

Handler for the pia out fault
condition

Raise the pia_out fault
condition in the caller of the
invocation that activated this
handler for pia out.

refault-1

refault

Example 2:

In this example, the outer program calls the
inner function which raises a fault
condition called faultl. After the handler
processes the fault condition, it may wish
to raise it to the attention of a handler
activated by the outer program. The refault
command allows raising the same fault
condition in the calling block.

program outer

handle faultl ! Handler for the fault
! fault condition
print "executing outer's handler™
fault ! Set termination status to
! "fajls"™
end handle

function inner
handle faultl ! Another handler for the
! faultl fault condition
print "executing inner's handler"™

refault ! Re-raise the same fault
! condition in the control
! program
end handle

if subcircuit5() fails then
! Test sub-circuit 5
! for faults
fault faultl 'Raise the faultl
'fault condition
end if
end function

execute inner ()

end program

refault-2

refault

Example 3:

In this example, the handler for fault2 in
the inner function wants to raise a
different fault condition, but doesn't want
to activate the handler for that fault that
is activated in the inner function. The
refault command raises this new fault
condition in the block that called the inner
function (in this case, the outer program).

program outer

handle faultl ! Handler for the faultl
! fault condition
print "executing outer's handler for
faultl”
fault ! Set termination status
! to "fails"
end handle

function inner

handle fault2 ! Handler for the fault2
! fault condition
print "executing inner's handler"™
refault faultl ! Raise the faultl
! fault condition in the
! outer program, not in
! the inner function
end handle

handle faultl
print "executing inner's handler
for faultl"™
end handle

refault-3

refault

if subcircuitl6() fails then
! Test sub-circuit 16

fault fault?2 ! Raise the fault2
! fault condition

end if
end function
execute inner()
end program

Remarks:

The refault command is an advanced feature for fault condition
handling. You will not need it for most test programs.

The purpose of the refault command is to permit fault condition
handlers at outer levels of a program to see fault conditions even
though they have been handled at a lower level. Once a fault
condition is handled, it normally disappears. A fault command
in the handler could be used to preserve the (failure) termination
status for the program, but if the faul/t command has the same
fault condition as the name of the handler, an infinite recursion
will occur.

This recursion can be avoided by using a refault command
instead of a fault command. When the refault command is used
in a handler, the effect is as if the fault condition that invoked the
handler had been raised in the invocation that activated that
handler. This insures that the current handler is not invoked
again, thereby avoiding an infinite recursion.

Using the refault command without a fault name raises the fault
condition that invoked the handler, but raises it in the calling
block. Using the refault command with a fault name raises the
new fault condition in the calling block.

refault-4

refault

’ Related Commands:
abort, fault, handle, return

For More Information:

i The "Overview of TL/1" section of the Programmer's
Manual.

refault-5

refault

refault-6

‘ Syntax:

remove menu
remove mode
remove part
remove ref

remove text

Syntax Diagram:

ramove

‘ Description:

remove
function

[<menu name>]
[<mode name>]
[<part name>]
[<ref name>]

[<text name>]

menu < name >
mode <name > .|
part <name >
ret <name >

text < name >

Removes definitions made by the define commands.

Options:

meénu name:

The name of the menu definition to
remove from the list of menu
definitions. If the menu string is of the
form "MMMM", that menu is removed.
If the menu string is of the form
"MMMM-IIII", that menu item is
removed, but the rest of the menu
remains. If the name is the null string
("), all of the menu definitions are
removed.

remove-1

remove

mode name:

part name:

ref name:

text name:

Example 1:
remove
Example 2:

remove

remove-2

part

part

"boxi'

The name of the mode definition to
remove from the list of mode
definitions. If the name is the null
string (""), all of the mode definitions
are removed. A comma-separated list
of mode names (with no spaces in the
list) allows more than one mode
definition to be removed.

The name of the part definition to
remove from the list of part definitions.
If the name is the null string ("), all of
the part definitions are removed. A
comma-separated list of part names
(with no spaces in the list) allows more
than one part definition to be removed.

The name of the reference designator
definition to remove from the list of ref
definitions. If the name is the null
string (""), all of the ref definitions are
removed. A comma-separated list of ref
names (with no spaces in the list)
allows more than one ref name to be
removed.

The name of the text definition to
remove from the list of text definitions.
If the name is the null string ("), all of
the text definitions are removed. A
comma-separated list of mode names
(with no spaces in the list) allows more
than one text name to be removed.

! Remove all part definitions

! Remove the part definition
! named "box"

remove

Example 3:

remove ref "™ ! Remove all ref definitions
Example 4:

remove menu "M1"“ ! Remove menu M1
Example 5:

remove menu "Ml-a" ! Remove item a from menu Ml

Remarks:

Removing a definition frees up any memory used by that
definition. All of the definitions are removed automatically at the
start of each new TL/1 invocation. A new TL/1 invocation is
started by pressing the REPEAT or EXEC keys on the
operator's keypad or by pressing the EXECUTE or INIT
softkeys when in the debugger.

Related Commands:

define mode, define menu, define part, define ref, define text

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

remove-3

remove

remove-4

reset
function

Syntax:
reset device <device list>
reset (<device list>)

reset ()

Syntax Diagram:

() l
reset __l_ device <« device list >

Description:

Configures the response-gathering hardware for the probe or an

I/O module to a default state.
Arguments:
device list I/O module name, clip module name,

probe name, or combinations of these.
(Default = "/probe")

Example 1:

reset device "/modl"™
Example 2:

iomod = clip ref "u5",pins 40
reset device iomod

reset-1

reset

Remarks:

The settings as a result of reset are as follows:

counter =

edge =

enable

sync

threshold

stopcount =
syncoutput=

edgeoutput=

enableoutput

clockfreq =

"transition"

"+" (rising edge for external start, stop, and
clock

"always"

"pod" for an I/O module
"freerun” for the probe

"ttl"
" 1 "
"intfreq”

"+" (rising edge for drive start, stop,
and clock)

"always"

" lMHZ"

Also note that although the syncoutput, edgeoutput,
enableoutput, and clockfreq settings are reset, they are only used
when a 9100-017 Vector Output I/O Module is connected.

In addition, all I/O module lines are placed in the high-

impedance state.

For More Information:

d The "Overview of TL/1" section of the Programmer’s

Manual.

reset-2

resetpersvars
function

Syntax:
resetpersvars ()

Syntax Diagram:

resetpersvars, ()

Description:
Resets the persistent variable set to the empty set.
Examples:

For each of the following example programs, assume that the
persistent variable set initially contains:

Name Type Value
pvl numeric 3

pv2 string "foo™
pv3 string "bar"

After executing the following command:
resetpersvars ()
the persistent variable set is empty.
After executing the following program:
program progl
declare persistent numeric pvl
resetpersvars ()

pvl = 4
end program

resetpersvars-1

resetpersvars

the persistent variable set contains:

Name Type Value
pvl numeric 4
After executing the following program:

program prog2
declare persistent string pv2
declare persistent string pv3
function foo

declare persistent string pv2

end function
resetpersvars ()
foo ()

end program

the persistent variable set contains:
Name Type Value

pv2 string "foo"

Remarks:

A local copy of any persistent variables known by the currently
executing TL/1 program is retained, along with the current
values. If any such persistent variables are subsequently
redeclared or are assigned a value, they are added back to the
persistent variable set.

The resetpersvars command allows purging of the persistent
variable set, which would otherwise accrete forever (or until
power was cycled).

Related Commands:

clearspersvars

resetpersvars-2

restorecal
function

Syntax:
restorecal [from <uut_pserdisk>,name<name>]
restorecal (<uut_userdisk>, <name>)
restorecal ()

Syntax Diagram:

9]
restorecal _L_ from < uut userdisk > l

name «<name>

<
«

<
4 ’

Description:

Restores the calibration values for the I/O module and the probe
from the requested UUT or USERDISK.

Arguments:
uut_userdisk USERDISK or UUT
Default = "USERDISK"
name USERDISK or UUT name
Default = "" (current USERDISK or
uuT)
Example 1:

! restore calibration values from the current UUT
restorecal from "UUT"

Example 2:

! restore calibration wvalue from the UUT DEMO
restorecal from "UUT", name "DEMO"

restorecal-1

restorecal

Example 3:

! restore calibration value from USERDISK /DRl

restorecal from "USERDISK", name "/DR1"
Remarks:

This function is similar to the front panel RESTORE CALDATA
operation and restores calibration values from a TL/1 program.
Calibration values may be restored from a USERDISK or UUT.

If the name of the USERDISK or UUT is the null string (""),
then the current USERDISK or UUT is used. If the
USERDISK or UUT is named, the calibration values are
restored from the named USERDISK or UUT. Calibration
values are restored for all I/O modules and the probe.

For More Information:

d The "Overview of TL/1" section of the Programmer’s

Manual.

restorecal-2

return

statement
Syntax:

return [<expression>]

Syntax Diagram:

return

L < expression > _l

Description:
Causes a program, function, handler, or exerciser to terminate.
Execution continues at the statement following the invocation
statement (for programs and functions) or at the statement
following the fault command (for handlers).

Arguments:
expression The value to return.

Returns:

As an option, the value of an expression can be returned when a
function or program terminates.

Example 1:

return ! Return control to calling program
Example 2:

return d + 1 Return control to calling program.
The value that the function
returns, is the wvalue of the

variable d, plus 1.

return-1

return

Remarks:

The value of an expression can be returned when a program or
function terminates. When the program or function is invoked as
part of an expression the returned value is used in the
expression.

A program or function that returns a value must do so explicitly.
A program or function may not return values of two different
types or return a value in one place without returning a value in
every other place.

After the last statement of a block is executed, a return command
is performed implicitly.

Related Commands:

execute, exercise, function, handle, program

For More Information:

return-2

4 The "Overview of TL/1" section of the Programmer's
Manual.

Syntax:

rotate addr <address>, data <data>

rotate (<address>,

Syntax Diagram:

rotate

Description:

<data>)

addr < address > , data <data >

rotate
function

Writes a data pattern to the specified address. The data is then
rotated to the right and a write operation is performed. This is
repeated as many times as there are data bits. Therefore, the last
write performed writes the original data rotated one bit left.

Arguments:

address

data

Examples:

All write operations are written to this
address.

Initial data value.

rotate addr SFFFFE, data $1234

The system performs the following sixteen operations:

write
write
write
write
write
write

addr
addr
addr
addr
addr
addr

SFFFFE,
SFFFFE,
SFFFFE,
SFFFFE,
SFFFFE,
SFFFFE,

data
data
data
data
data
data

$1234
$091A
$048D
$8246
$4123
SA091

(example is continued on the next page)

rotate-1

rotate

write addr S$FFFFE, data $D048
write addr S$FFFFE, data $6824
write addr SFFFFE, data $3412
write addr SFFFFE, data $1A09
write addr SFFFFE, data $8D04
write addr SFFFFE, data $4682
write addr SFFFFE, data $2341
write addr S$FFFFE, data $91A0
write addr S$FFFFE, data $48DO0
write addr S$FFFFE, data $2468

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

rotate-2

runuut
special function

{EEE-LABA
Syntax:
runuut addr <address 1> [, break <address 2>]

Syntax Diagram:

runuut addr < address 1 >

I_ , break «<address2 > ._J

Description:

Causes the UUT to begin executing instructions from its own
memory, asynchronously to the system.

Arguments:
address 1 Start address.
address 2 Break address.

Example 1:

runuut addr $1235
! start at hex address 1235

Example 2:

runuut addr (read addr SFFFE)
! start at address read from location FFFE

Example 3:
runuut addr $1235, break $2000

! start at hex address 1235
! stop at hex address 2000

runuut-1

runuut

Remarks:

Typically, runuut would be followed by waituut with a suitable
maxtime value which would allow the UUT time to complete its
operation.

Some pods have a breakpoint capability which can optionally be
enabled by specifying a stop address with the "break" argument.
Generally, pods designed before the 8§0286-era cannot use the
"break" feature. Refer to your pod manual for more specific
information.

Execution of runuut continues until one of the following events
occurs:

¢ The pod encounters a breakpoint.

d A DCE condition occurs.

®* A haltuut is executed.

d The time specified in a waituut expires.

d The RESET key is pressed on the operator's keypad.

A The RUN UUT HALT command is entered from the
operator's keypad.

Faults which occur during the execution of runuut are reported
on the subsequent haltuut or waituut. Attempts to perform any
pod-related operations except waituut, haltuut, or polluut will
result in an error if the runuut is still active. You must execute
haltuut or waituut before attempting any other pod-related
operations.

Related Commands:

compare, haltuut, polluut, waituut

runuut-2

runuut

‘ For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

¢ The Fluke pod manual for the microprocessor you are
using.

runuut-3

runuut

runuut-4

runuutspecial
special function

=

Syntax:

runuutspecial addr <address 1> [, break <address 2>]
runuutspecial (<address 1>, <address 2>)
runuutspecial ()

Syntax Diagram:

)

runuutspecial l
| — addr <address | >
| break <address2> __]

oy <@
- ’ %

Description:

Causes the UUT to begin executing instructions from its own
memory, asynchronously to the system. Execution begins at the
virtual address specified. If none is specified, runuutspecial
defaults to an address that is pod dependent.

Arguments:
address 1 Virtual start address.
address 2 Stop address.

(Default = 0)
Example 1:

runuutspecial ()
! start at pod-dependent starting
! address.

Example 2:

runuutspecial addr (read addr S$FFFE)
! start at virtual address read from
! location FFFE

runuutspecial-1

runuutspecial

Example 3:

runuutspecial addr $1235, break 52000
! start at hex virtual address 1235
! stop at hex address 2000

Remarks:

Some pods have special addresses where a runuut may begin.
Such addresses may read a reset or interrupt vector from
memory and begin execution at that address.

Typically, runuutspecial would be followed by waituut with a
suitable maxtime value that allows the UUT time to complete its
operation.

Some pods have a breakpoint capability which can optionally be
enabled by specifying a stop address with the "break” argument.
Generally, pods designed before the 80286-era cannot use the
"break" feature. Refer to your pod manual for more specific
information.

Execution of runuutspecial continues until one of the following
events occurs:

d The pod encounters a breakpoint.

d A DCE condition occurs.

d A haltuut is executed.

¢ The time specified in a waituut expires.

® The RESET key is press on the operator's keypad.

b The RUN UUT HALT command is entered from the
operator's keypad.

runuutspecial-2

runuutspecial

Faults that occur during the execution of runuutspecial are
reported on the subsequent haltuut or waituut. Attempts to
perform any pod-related operations except waituut, haltuut, or
polluut results in an error if the runuutspecial is still active. You
must execute haltuut or waituut before attempting any other pod-
related operations.

Related Commands:
compare, haltuut, polluut, waituut, runuut

For More Information:

® The "Overview of TL/1" section of the Programmer's

Manual.

® The Fluke pod manual for the microprocessor you are
using.

* Supplemental Pod Information for 9100A/9105A User's
Manual.

runuutspecial-3

runuutspecial

runuutspecial-4

runuutvirtual
special function

Syntax:

runuutvirtual [extadddr <ext>,] addr <address 1>
[, break <address 2>]

runuutvirtual (<address 1>, <address 2>)

runuutvirtual ()
Syntax Diagram:

0

runuutvirtual _l:_ extaddr «<ext> I

| _ addr < address 1>
| __ break < address2> ____|

L ¢ —¢—

Description:

Runuutvirtual is a compete replacement for the obsoleted
runuutspecial command. Runuutvirtual causes the UUT to
begin executing instructions from its own memory,
asynchronously to the system. Execution begins at the virtual
address specified. If none is specified, runuutvirtual defaults to
an address that is pod dependent.

Arguments:
ext Extended address bits used to
form virtual addresses from
address 1 and address 2.
address 1 Start address.
address 2 Breakpoint address.
(Default = 0)
Example 1:

runuutvirtual ()

! start at pod-dependent starting
! address.

runuutvirtual-1

runuutvirtual

Example 2:

runuutvirtual addr (read addr S$FFFE)
! start at virtual address read from
! location FFFE

Example 3:

runuutvirtual addr $1235, break $2000
! start at hex virtual address 1235
! stop at hex address 2000

Remarks:

Some pods have special addresses where a runuut may begin.
Such addresses may read a reset or interrupt vector from
memory and begin execution at that address.

Typically, runuutvirtual would be followed by waituut with a
suitable maxtime value that allows the UUT time to complete its
operation.

Some pods have a breakpoint capability which can optionally be
enabled by specifying a stop address with the "break" argument.
Generally, pods designed before the 80286-era cannot use the
"break" feature. Refer to your pod manual for more specific
information.

Execution of runuutvirtual continues until one of the following
events occurs:

¢ The pod encounters a breakpoint.

i A DCE condition occurs.

® A haltuut is executed.

¢ The time specified in a waituut expires.

® The RESET key is press on the operator's keypad.

o The RUN UUT HALT command is entered from the
operator's keypad.

runuutvirtual-2

runuutvirtual

Faults that occur during the execution of runuutvirtual are
reported on the subsequent haltuut or waituut. Attempts to
perform any pod-related operations except waituut, haltuut, or
polluut results in an error if the runuutvirtual is still active. You
must execute haltuut or waituut before attempting any other pod-
related operations.

Related Commands:
compare, haltuut, polluut, waituut, runuut

For More Information:

® The "Overview of TL/1" section of the Programmer’s

Manual.

i The Fluke pod manual for the microprocessor you are
using.

d Supplemental Pod Information for 9100A/9105A Users
Manual.

runuutvirtual-3

runuutvirtual

runuutvirtual-4

setbit

operator
Syntax:

setbit <number>

Syntax Diagram:

seotbit < number >

Description:

Calculates the number that results from setting the bit whose
index is given by the operand.

Arguments:

number Index on bit to set.
Example:

x = setbit 3 ! the variable x is set to 8
Remarks:

An argument value greater than 31 (dééiinal) Causes an error.
Related Commands:

bitmask

setbit-1

setbit

setbit-2

setoffset
function

Syntax:

setoffset [device <device name>] [, offset <value>]
setoffset (<device name>, <value>)
setoffset ()

Syntax Diagram:

)

setoffset __J__ device <« device name >

offset < value >

- -
- ’ -

Description:

Sets the delay offset for the specified I/O module or probe
device. The value entered is biased by a value of 1000000
(decimal). For example, if data is to be sampled 10
nanoseconds before the calibration point, enter a value of
999990 (decimal). The delay lines in the hardware (I/O module
or probe) will be set to the closest tap possible, which provides
the desired delay offset. The I/O module has a resolution of
about 15 nanoseconds per tap, and the probe has a resolution of
about 4 nanoseconds per tap.

Each sync mode has a separate offset associated with it. For this
reason, changing sync modes will change the offset.

Arguments:
device name I/O module name or probe name.
(Default = "/probe")
value Desired offset from calibration point.
The value entered is biased by 1000000
(decimal).

(Default = 1000000)

setoffset-1

setoffset

Returns:

Returns a status of 1 or 0. A one indicates that the setting of the
offset was successful (within the range of the hardware). A zero
indicates that when setting the offset with the current calibration
value, the resulting delay line setting is out of the range of the
hardware. In this case, the hardware will still be set as close as
possible to the desired offset; that is, the offset will be set to
either the maximum or minimum of its range, depending on the
offset value.

Example 1:

! Set an offset of -10 nanoseconds for the
! probe in pod address sync

sync device "/probe" mode "pod"
sync device "/pod", mode "addr"
offset_value = 1000000 - 10
sts = setoffset device "/probe", offset
offset value
if (sts = 1) then
print "setoffset succeeded"
else
print "setoffset failed"
end if

Example 2:

! Set an offset of 0 nanoseconds for I/0
! module 1 in pod data sync

sync device "/modl”, mode “pod"
sync device "/pod”, mode "data"
offset_value = 1000000
sts = setoffset device "/modl", offset offset_value
if (sts = 1) then
print "setoffset succeeded"
else
print "setoffset failed"
end if

setoffset-2

setofiset

. Example 3:

! Set an offset of 25 nanoseconds for I/0
! module 4 in ext sync

sync device "/mod4", mode "ext"
offset_value = 1000000 + 25
sts = setoffset device "/mod4", offset offset_value
if (sts = 1) then
print "setoffset succeeded”
else
print “setoffset failed®
end if

Remarks:

The setoffset command is valid only if the sync mode is "pod”
or "ext"

In most cases, this function will not need to be used. Once the
probe and I/O module have been calibrated to a particular pod,
their delay lines will have been set properly for the selected sync
‘ mode. But if special situations arise, where it is desired to
“move" the clock point around, this command can be used.

These offsets are always relative to an edge. The calibration
procedure for the probe and 1/O module finds the correct delay
settings for a particular edge (for example, falling edge of ALE
on the 8088 pod in address sync mode). The calibration
procedure then sets an offset from that edge as defined in the
pod database. When calibrating to ext, the offset is set to zero.
This setoffset command allows other values of offset to be used,
rather than these defaults.

Remarks concerning example 1 (using pod sync):

In the 80286 pod, assume that address sync is specified to occur
45 nanoseconds prior to the rising edge of signal ~S1. When
calibration is performed, the hardware delay lines will be set as
close as possible to this point. If getoffset is performed at this
point, it will return a value of 999955 (decimal) or a value close
to that, since the hardware provides delays in incremental
. values. Ifitis desired to sample a signal 20 nanoseconds before

setoffset-3

setoffset

the rising edge of ~S1, an offset of 999980 (decimal) would be '
used. If it is desired to sample a signal exactly on the edge of

~S1, an offset of 1000000 (decimal) would be used. And if it

was desired to sample 35 nanoseconds after ~S1, an offset of
1000035 (decimal) would be used.

Remarks concerning example 3 (using external sync):

If getoffset were performed just after an external calibration, the
offset would return 1000000 (decimal) or some number near
1000000. This indicates that data will be sampled on the edge of
the clock signal. If it is desired to sample the signal 28
nanoseconds before the clock edge, the offset would be set to
999972 (decimal). Likewise, sampling after the clock edge
would require an offset value greater than 1000000 (decimal).

The range of the setoffset command may vary from unit to unit.
You need to be careful with programs that require large offsets.
These offsets may be legal on some units but illegal on others.
The recommended procedure is to determine the allowable range
of offsets for a particular sync mode, and then make sure that
some guard band is left. This range can be determined by
selecting two very large offsets, such as +1000 nanoseconds
and -1000 nanoseconds. Since these values will drive the
hardware to its maximum settings, performing a getoffset will
return the maximum and minimum allowable offset values
respectively.

Related Commands:
arm, getoffset

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

i The "Offset Command" section of the Programmer’s
Manual for information on using offsets with GFL

setoffset-4

setspace
function

 GEEE-Loa 4
Syntax:

setspace space <expression>

setspace (<expression>)

Syntax Diagram:

setspace space <« expression >

Description:

Sets the address space to the specified number.

Arguments:
expression A value returned by getspace or
sysspace.
Example:

program testl5
3 = getspace space "memory", size "byte"
setspace space s ! Sets the address space
! parameters.

Saves the last-used
address space parameters.
Suppose the program testl2
changes the address space.
Restores the original
address space parameters.

s2 = sysspace ()
execute testl2

setspace space s2

end program

setspace-1

setspace

Remarks:
Set the address space to the number returned by sysspace or
getspace. It is meaningless to give setspace a number other than

one returned by getspace or sysspace. An invalid space will
cause an error.

Related Commands:
getspace, sysspace

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.
d Appendix I, "Pod-Related Information," in this manual.

setspace-2

setword
function

=

Syntax:

setword [device <device name>] [, word <word number>]
[, as_pins <pins>]

setword (<device name>, <word number> , <pins>)
Syntax Diagram:

()
setword l device < VO module name > I

L word < wordnumber> __|
as_pins < pins >

) N 4
<« «

Description:

Allows pin numbers to be grouped together to form a user
defined word. Setword is identical to the front panel operation
IOMOD SET WORD. Up to 40 unique pins may be grouped
together for each I/O module in five different groups.

Arguments:

device name I/O module name, ("/mod1”, "/mod2",
"/mod3", or "/mod4").
(Default = "/mod1")

word number The number of the word group. Valid
values are from 1 through 5.
(Default=1)

pins A string of from 1 through 40 unique

pin numbers.
(Default ="40393837..4321")

setword-1

setword

Example 1:

setword device "/modl", word 1, as pins "1 2 3 4"
Example 2:
setword device "/modl", word 5, as_pins "40 39 2 1"

Remarks:

The setword function is identical in operation to the front panel

operation IOMOD SET WORD. The purpose of this command is

to group together user related pins to form specific words for

use with the readword and writeword commands.

Only unique pin numbers between 1 and 40 inclusive are valid.
Related Commands:

readword, writeword

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

setword-2

shl

operator
Syntax:

<expression 1> shl [<expression 2>]

Syntax Diagram:

< expression 1 >

shl
L << _J L < expression 2 > J

Description:

Shifts the operand left by either one bit, or a specified number of
bits. The first operand is shifted left: by one bit if the second
operand is omitted, or by the number of bits specified by the
second operand.

Arguments:
expression 1 The operand to be shifted left.
expression 2 The number of bits to shift.
(Default = 1)
Returns:
The shifted number.
Example 1:
x = 7 shl ! the variable x is set to E
Example 2:
x = 7 shl 2 ! the variable x is set to 1C

shi-1

shli

Example 3:
x = 12 shl 2 ! the variable x is set to 30
! hexadecimal
Remarks:

The symbol, <<, also denotes the shl operation.

An error is raised if expression 2 is greater than decimal 31.

Since shl operations are carried out from right to left,
a shl b shl c
is the same as:
a shl (b shl c)
Related Commands:

shr

shi-2

shr

operator
Syntax:

<expression 1> shr [<expression 2>]

Syntax Diagram:

< expression 1 >

shr
L >> _] T_ <expression2>_l

Description:

Shifts the operand right by either one bit, or a specified number
of bits. The first operand is shifted right: by one bit if the
second operand is omitted, or by the number of bits specified by
the second operand.

Arguments:
expression 1 The operand to be shifted right.
expression 2 The number of bits to shift.
(Default=1)
Returns:
The shifted number.
Example 1:
y = 519 shr ! the variable y is set to C
Example 2:
y = 819 shr 3 ! the variable y is set to 3
Example 3:
y = 19 shr 3 ! the variable y is set to 2

shr-1

shr

Remarks:

The symbol, >> , also denotes the shr operation.

An error is caused if expression 2 is greater than decimal 31.

Since shr operations are carried out from right to left,
a shr b shr ¢
is the same as:
a shr (b shr c)
Related Commands:

shl

shr-2

sig
function

Syntax:

sig [device <device name>] [, pin <pin number>]
[, refpin <refpin name>]

sig (<device name>, <pin number>, <refpin name>)
sig ()

Syntax Diagram:

)

slg _I__ device <« device name >

l—— pin < pin number >
|__ refpln <« refpinname > __|

ot alb.
< ' 4

Description:

Returns the signature for one pin. The signature can be
requested either in terms of an 1/O module pin, a component pin,
or the probe. This command will return useful information only
after an arm . . . readout block has taken a measurement.

Arguments:
device name I/O module name, clip module name,
probe name, or reference designator.
(Default = "/probe™)
pin number Pin number of device specified.
(Default = 1)
refpin name Specifies the device and pin in string

format. The refpin argument is used to
override the device and pin values.
(Default ="")

sig-1

sig

Returns:
The 16-bit signature read.
Example 1:

modlist = clip ref "U3", pins 40
modsig = sig device "U3", pin 12
! Get sig on U3 pin 12

Example 2:

modsig = sig device "/modl™, pin 12
! Get sig on pin 12 of I/0 module 1

Example 3:

modsig = sig ("/modla™, 12,""™)
! Get sig on pin 12 of I/O module 1, clip A
! A refpin value must be supplied.

Remarks:

The signature can be requested for a specific pin of an I/O
module by specifying the module name ("/modl1”, "/mod2",
etc.) as the device argument. The pin argument is interpreted as
an I/O module pin. Refer to Appendix E for tables that show
what I/O module pin numbers to use for every possible clip
module.

If a component name ("U1", "U2", etc.) is specified as the
device argument, the pin argument is interpreted as a component
pin. The sig function determines the I/O module and pin number
that corresponds to the specified component pin. The named
component must have been previously named in a clip
command.

If the string value for refpin is not a null string (""
of the device and pin arguments are ignored.

), the values

The sig function should be called only after the execution of an
arm . . . readout block.

sig-2

sig

Related Commands:
arm, count, level, readout

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

sig-3

sig

sig-4

sin
function

Syntax:

sin angle <expression>

sin (<expression>)

Syntax Diagram:

sin . angle < expression >

Description:

Retumns the sine function of the floating-point argument value.

Argument:
expression The floating-point argument
value, expressed in radians.
Returns:
A floating-point number
Examples :
f = sin ((natural pi)/ 2.0)

f = sin angle theta
Related Commands:

asin, natural

sin-1

sin-2

sqrt
function

Syntax:

sgrt num <expression>
sqrt (<expression>)

Syntax Diagram:

sqrt __________ num < expression >

Description:

Returns the square root of a floating-point argument value.

Arguments:
expression A floating argument value, which must
be greater than or equal to 0.0.
Returns:

A floating-point number.
Examples:

f
f

sgqrt num f
sqrt (3.0)

Related Commands:

pow, log

sqrt-1

sqrt

sqrt-2

stopcount
function

=
Syntax:

stopcount [device <device list>] [,count <number>]
stopcount (<device list>, <number>)

stopcount ()

Syntax Diagram:

)
stopcount _L_ device « device list >]

e cOUNt < number >

b oy
.2 ’ .

Description:

Sets the programmable stop count that turns off the response-
gathering hardware after the specified number of enabled clock
pulses. The stopcount function assigns this feature to the probe
or a single I/O module and specifies the value of the stop count

(1-65535).
Arguments:

device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")

number Number of clock pulses that the
response-gathering hardware should
count.

(Default = 1)

stopcount-1

stopcount

Example:

mod = clip ref "ub55", pins 24
stopcount device mod, count 100

Remarks:

When using stopcount, the edge command is required to set the
stop condition to "count".

To get the same count as that entered at the operator's keypad,
use a decimal number for the stopcount.

Example: stopcount count 1000
Related Commands:
arm, edge, readout

For More Information:

4 The "Overview of TL/1" section of the Programmer’s '
Manual.

stopcount-2

storepatt
function

=5

Syntax:

storepatt device <device name>, pin <pin number>,
patt <string pattern> [, refpin <refpin name>]

storepatt (<device name>, <pin number>, <string
pattern>, <refpin name>)

Syntax Diagram:

storepatt device « device name> , pln < pin number >

. — , patt «<string pattern >

I_ , refpln <« refpin name > _l

Description:

Stores an arbitrary sequence of patterns that will be overdriven
with the I/O module. The last pattern driven can be latched or

pulsed.
Arguments:
device name 1/0 module name, clip module name, or
reference designator.
pin number Pin number affected.
string pattern §t1"'ing, composed of "1", "0", "X", or
x".
refpin name Specifies the device and pin in string

format. The refpin argument is used to
override the device and pin values.
(Default ="")

storepatt-1

storepatt

Example:

! driving a 7400 through its truth table

mod = clip ref "ul", pins 14
sync device mod, mode “int™
clearpatt device "ul"

storepatt device "ul", pin 1, patt "001i1"
storepatt device "ul", pin 2, patt "0101"
storepatt device "ul", pin 4, patt "0011"
storepatt device "ul", pin 5, patt "0101"
storepatt device "ul", pin 9, patt "0011"

storepatt device "ul", pin 10, patt "0101"
storepatt device "ul", pin 12, patt "0011"
storepatt device "ul", pin 13, patt "0101"

arm device mod
writepatt device "ul", mode "latch"
readout device mod

Remarks:

The storepatt command stores an arbitrary sequence of patterns
that will be overdriven with the I/O module. The last pattern
driven can be either latched or pulsed. The overdrivers are
turned off either by writing a pattern that sets all pins to high-
impedance, or by using the clearoutputs command.

You describe the pattern to be driven using a pattern string.
Each string describes the pattern of highs, lows, and high-
impedance states that a single pin should be driven through.

Pattern strings are composed of the following characters: "1" =
high; "0" = low; "X" or "x" = high-impedance.

For example, to use an I/O module pin and drive it alternately
high and low, you would specify the following type of pattern
string: "10101010101010101010".

storepatt-2

storepatt

‘ The pattern can be driven in the following terms: I/O module
pins, pins on an I/O module clip, or reference designator pins:

For I/O module names: pin numbers are interpreted as
I/O module pins. Each I/O module can have up to two
clips connected. The clips are referred to as "A" and "B",
depending on which end of the I/O module they are
connected to.

For clip module names: pin numbers are interpreted as
clip pin numbers.

For reference designator names: pin numbers are
interpreted as component pins. An error is generated if the
system does not recognize that the clip is connected to the
component. This error occurs when the programmer does
not use the clip command in the program.

If the string value for refpin is not a null string (""), the
values of the device and pin arguments are ignored.

. Related Commands:
clearoutputs, clearpatt, writepatt

For More Information:

A The "Overview of TL/1" section of the Programmer’s
Manual.

storepatt-3

storepatt

storepatt-4

str
function

Syntax:

str num <expression 1> [, radix <expression 2>]
str (<expression 1>, <expression 2>)

Syntax Diagram:

str num < expression 1 >

l_ , radlx < expression2 > _]

Description:

Returns the string representation of the numeric operand.

Arguments:
expression 1 A numeric expression for the number to
be converted into a string
representation.
expression 2 A numeric expression for the radix of
the number to be converted. The
allowed radices are 2, 8, 10(default), or
16.
Returns:

The string representing the converted number.

Examples:
X = str(256,10) ! the variable x is set to the
! character string "256"
x = str(256,16) ! the variable x is set to the

! character string "100"

str-1

str

Related Commands:

Jstr, val

str-2

strobeclock
function

Syntax:

strobeclock device <device list>
strobeclock (<device list>)

strobeclock ()

Syntax Diagram:

)

strobaclock __l_ device < device list >]

Description:

Strobes the internal clock of the probe or the specified 1I/O
module for clocking CRC signatures and synchronous level

histories.
Arguments:
device list I/O module name, clip module name, or
probe name.
(Default = "/probe")
Example:

mod = "/modl™

sync device mod, mode "int"
! "int" mode is required for the
! strobeclock command

counter device mod, mode "transition"

arm device mod

strobeclock device mod
readout device mod

crc = sig device mod, pin 1
1vl level device mod, pin 1, type "clocked”

strobeclock-1

strobeclock

Remarks: .

The "int" sync mode is required when using the strobeclock
command.

Related Commands:
arm, readout, sync

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

strobeclock-2

sync
function

{EEE-LABO
Syntax:
sync [device <device 1list>,] mode <mode name>
sync (<device list>, <mode name>)

Syntax Diagram:

synec mode < mode name >
L device « device list> , _J

Description:

Sets the synchronization mode for the pod, the probe, or a single
I/O module. The allowable modes are a pod sync, external sync,
freerun sync, or internal sync.

Arguments:
device list Pod, I/O module name, clip module
name, probe name, or combinations of
these.
(Default = "/pod")
mode name Pod sync modes: to match those on the
pod database.
Probe or I/O module sync modes:
"pod", "ext", "int", or "freerun".
Example:

mod = clip ref "ul", pins 16
sync device mod, mode "pod"

sync device "/pod", mode "addr"™

sync device "/probe", mode "freerun"

sync-1

sync

Remarks:

sync-2

When using the "pod" mode for the sync command, you must
tell the pod what kind of pod sync signal should be generated.
This is done with a second sync command:

sync device "/probe”, mode "pod"
sync device "/pod"”, mode "data"

Four I/O module or probe sync modes are allowed: external
sync, pod sync, freerun sync, and internal sync.

External Sync Mode

This mode qualifies the external Clock line with the external
measurement control Start, Stop, and Enable lines. For the
probe, the lines are available through the clock module. The I/O
module has its own measurement control lines.

Start, Stop, and Clock are edge-sensitive inputs from the UUT.
Each can be made to respond to falling or rising edges. The
sync period can also be programmed to end after a specified
number of valid clock pulses, in which case the Stop input is
ignored. Enable is a level-sensitive signal and can be specified
by the enable command.

After an arm command is entered, and after a valid Start edge is
detected, the sync measurement period begins. Start is
recognized independently of the enabling condition, but data is
only gathered after the enabling condition becomes true.
Asynchronous data is gathered immediately after this point.
Synchronous data is gathered after the same point but only at the
selected clock edges.

The data gathering period ends when the Stop condition
becomes true: the selected Stop edge occurs, or a programmed
number of clock edges completes. The data-gathering period
ends when a readout command is executed.

In addition, this synchronization mode can be used to
synchronize the probe's pulsing output resulting from the pulser
command.

sync

Pod Sync Mode

This mode uses Pod Sync, an internal pod signal, as the clock.
The generation of Pod Sync can be made to depend on valid
address, data, or other (pod-dependent) cycles. The external
measurement control lines are ignored.

Data is gathered after an arm command until a readout command
is executed.

In addition, this synchronization mode can be used to
synchronize the probe's pulsing output resulting from the pulser
command.

Freerun Sync Mode

In this mode, the probe uses the 9100A/9105A system's internal
1k Hz clock for asynchronous output. The external Start, Stop,
Clock, and Enable lines are ignored.

For both the I/O modules and the probe, asynchronous level
history and transition count data can be gathered between the
arm and readout commands. CRC signatures and clocked level
histories are not gathered.

In addition, this synchronous mode can be used to synchronize
the probe's pulsing output resulting from the pulser command.

Internal Sync Mode

This sync mode is designed to use a clock signal generated
internally be the strobeclock command. The external
measurement control lines (Start, Stop, Clock, and Enable) are
ignored.

In addition, this synchronous mode can be used to synchronize
the probe's pulsing output resulting from the pulser command.

sync-3

sync

Related Commands: ‘

arm, checkstatus, connect, enable, readout, strobeclock

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

d The Fluke pod manual for the microprocessor you are
using.

sync-4

sysaddr

function

Syntax:
sysaddr ()

Syntax Diagram:

sysaddr ()

Description:

Returns the last address written to or read from.
Returns:

The last address written to or read from.
Example:

lastaddr = sysaddr () ! stores the last address
! written to or read from in
! the variable lastaddr.

write addr sysaddr (), data $34

Remarks:

The value returned by sysaddr is used as the default address for
the next read or write initiated from the operator's keypad.

In some cases, the last address written to or read from does not
update sysaddr.

sysaddr-1

sysaddr

Related Commands:
sysspace

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

sysaddr-2

sysdata
function

Syntax:
sysdata ()

Syntax Diagram:

sysdata ()

Description:

Returns the last data read or written.

Returns:
The last data read or written.
Example:
lastdata = sysdata () ! stores the last data read

! in the variable lastdata
write data sysdata (), addr next

Remarks:

The value returned by sysdata is used as the default data for the
next read or write initiated from the operator's keypad.

In some cases, the last data written or read does not update
sysdata.

sysadata-1

sysdata

Related Commands:

sysspace

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

sysdata-2

sysinfo
special function

Syntax:
sysinfo get <attribute name>

Syntax Diagram:

sysinfo_________ get <attribute name >

Description:

The sysinfo command quieries information about the system.
Each system attribute which can be manifulated, has a unique
name. Currently, only the following system attribute can be

determined:

/system/version The string describing the system
software release version (for
example, “6.0”).

/systemy/model The string describing the system

model (for example, "9100",
"9105", "9100FT", or "9105FT").

When invoked with the 'get’ argument, sysinfo returns a string
representing the value of the requesting attribute.

Arguments:
get The name of the attribute to
retrieve.
Example:

The following retrieves the system software version string:

s sysinfo get “/system/version”

s sysinfo get “/system/model”

sysinfo-1

sysinfo

Remarks:
This command first appeared in the 6.0 software release. ‘

For More Information:

b The "Overview of TL/1" section of the Programmer's
Manual.

sysinfo-2

sysspace
function

=)
Syntax:

sysspace ()

Syntax Diagram:

sysspace ()

Description:
Returns the number associated with the last address space
accessed.

Returns:

The number associated with the last address space accessed.

Examples:

program testl5
s = getspace space "memory", size "byte"
setspace space s ! Sets the address space
! parameters.

Saves the last-used
address space parameters.
Suppose the program testl2
changes the address space.
Restores the original
address space parameters.

s2 = sysspace ()
execute testl2

setspace space s2

end program

sysspace-1

sysspace

Related Commands:

getspace, setspace, sysaddr, sysdata

For More Information:

o The "Overview of TL/1" section of the Programmer’s
Manual.

sysspace-2

systime
function

Syntax:
systime ()

Syntax Diagram:

systime ()

Description:

Returns the number of seconds that have elapsed since a
particular date (January 1, 1980). This number alone is
generally not useful. However, the difference between the
numbers returned by two invocations of systime yields the
elapsed time in seconds between the two invocations. The
systime function also provides the argument for the readdate and
readtime functions that produce the current date and time.

Returns:
The number of elapsed seconds.
Example:

start = systime ()

testramfull addr 0, upto $7FFF

finish = systime ()

print "Full RAM test took ", finish - start,
" seconds"

! prints: "Full RAM test took 368 seconds"

! if, testramfull requires six minutes and
! eight seconds to execute

systime-1

systime

Related Commands:

readdate, readtime

For More Information:

b The "Overview of TL/1" section of the Programmer’s
Manual.

systime-2

tan
function

@ eci-.6 3

Syntax:

tan angle <expression>
tan (<expression>)

Syntax Diagram:

tan . angle < expression >

Description:
Returns the tangent function of a floating-point argument value.

‘ Argument:

expression The argument (floating-point)
value in radians.

Returns:
A floating-point number.
Examples:

£
£

tan ((natural pi)/4.0)
tan angle theta

Related Commands:

atan, natural

tan-1

tan

tan-2

testhus
function

{EEE-LBB
Syntax:
testbus addr <address>
testbus (<address>)

Syntax Diagram:

testbus addr < address >

Description:

Checks the address, data, and control lines for drivability.

Argument:
address Readable/writable address used for data
bus testing.
Example:

testbus addr S$FFFF

Remarks:

The testbus test performs the following checks:

¢ Tests for control-line drivability.
® Tests for address drivability and tied address lines.
® Tests for data drivability and tied data lines.

The specified address must be a RAM location to prevent
erroneous data line faults from being reported.

testbus-1

testbus

It is not a good idea to use testbus as a stimulus in GFI. The
algorithm for this functional test could change and this would
also change any resulting signatures. The commands
toggleaddr, toggledata, rampaddr, and rampdata should be used
instead.

Related Commands:
fails, passes

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

testbus-2

testramfast
function

Syntax:
testramfast addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep> [, delay <delay>]
[, seed <seed>]

testramfast (<addr>, <upto>, <mask>, <addrstep>,
<delay>, <seed>)

Syntax Diagram:

testramfast __. addr <addr>, upto <uplo>

T_, mask <mask>_]

addrstep < addrstep >

delay < dolay > _]

L , seed <seed>J

Description:

Performs a probabilistic test on RAM.

Arguments:
addr Starting address.
upto Ending address.
mask Bit mask of testable data bits.
(Default = $FFFFFFFF)
addrstep Address increment.
delay Milliseconds to delay between sweeps.

(Default = 250)

testramfast-1

testramfast

seed Number to be used as seed for pseudo- .
random number generator.
(Default = 0; seed based on real-time
clock.)

Example 1:

testramfast addr $B, upto here, addrstep 2
! address hex B to address in variable
! "here"

Example 2:

testramfast addr $1234, upto $12FE, mask $7F,
addrstep 2
! only the lower 7 data bits are tested

Remarks:

The fast RAM test is a probabilistic test which has complete
coverage of a wide range of common faults and very thorough
coverage of nearly every possible RAM fault. Each word is
accessed five times using pseudo-random data.

The coverage of testramfast is shown on the next page. "P"
represents the probability that a fault is not detected. "K"
represents the number of addresses affected by the fault. The
values which appear in parentheses are the actual probabilities
for a 16K memory. Larger memories have better fault coverage.

testramfast-2

testramfast

testramfast Coverage
Fault Condition Coverage
Stuck cells Always found.
Aliased cells Always found.
Stuck address lines Always found.
Stuck data lines Always found.
Shorted address lines Always found.
Shorted data lines P =0.5"

Multiple selection decoder P = 0.5%(2.9 x 10™) for a row
or column decoder.

Dynamic coupling P = 0.75% (0.75 for 1 cell
coupling to 1 other cell).

Aliasing between bits in P = 0.5%.

same word

Refresh problems Always detected if the delay is

sufficiently long and standby
reads do not mask the problem.

Pattern sensitive faults Because of the random nature of
this test, some pattern sensitive
faults can be detected.

The seed parameter controls the exact sequence of pseudo-
random values which are generated. When the seed argument is
zero, the 9100A/9105A generates a different sequence of
pseudo-random data at each pass through the memory. You
should specify zero in most applications.

The mask parameter provides a convenient method for testing
the parity bit of memories so equipped. First you perform a
testramfast test with a mask that tests all valid data bits. Then
you do a second testramfast test, but use a mask with an odd
number of bits set. In addition, this second test is done with a
line of a clip module connected to the output of the memory
parity tree. The DCE condition is generated by using a compare

testramfast-3

testramfast

command with a compare string only one bit long, which checks
for the desired logic level at the parity tree output.

The procedure for testing memories with error-correcting codes
is similar, except that you should choose a mask such that
toggling the bits specified by the mask will cause all the check
bits to toggle.

Related Commands:
fails, passes, testramfull

For More Information:

b The "Overview of TL/1" section of the Programmer’s
Manual.

testramfast-4

testramfull
function

°

Syntax:
testramfull addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep> [, delay <delay>]
[, coupling <coupling>]

testramfull (<addr>, <upto>, <mask>, <addrstep>,
<delay>, <coupling>)

Syntax Diagram:

testramfull __ addr <addr> , upto <upto>
L , mask <mask> _l

+« — , addrstep < addrstep x.

L , delay <delay>_]

‘ L s coupling < coupling > _]

Description:

Performs a deterministic test of RAM functionality. It couples a
test for static and dynamic coupling of cells in the same data
word with a comprehensive Suk and Reddy B-test (a standard
algorithm for testing memory).

Arguments:
addr Starting address.
upto Ending address.
mask Bit mask of valid data bits.
(Default = $SFFFFFFFF)
addrstep Address increment.

testramfull-1

testramfull

delay Milliseconds to delay between sweeps. '
(Default = 250)

coupling "on" or "off".
(Default = "off™)

Example 1:

testramfull addr $B, upto here, addrstep 2
! address hex B to variable address "here”

Example 2:

testramfull addr $1234, upto $13FF, mask $7F,
addrstep 2

Remarks:

The full RAM test is a deterministic test of RAM functionality.
With coupling disabled, each word is accessed 17 times. With
coupling enabled, each word is accessed 29 times for 8-bit
spaces, 33 times for 16-bit spaces, and 37 times for 32-bit
spaces.

This test has been found to be superior to testramfast in finding
faults caused by electrical transients in the bus where worst-case
fault detection occurs when writing data with all ones or all
zeros. Fault coverage for testramfull is shown on the next page.

testramfull-2

testramfull

testramfull Coverage

Fault Condition Coverage

Stuck cells Always found.

Aliased cells Always found.

Stuck address lines Always found.

Stuck data lines Always found.

Shorted address lines Always found.

Shorted address lines Always found if coupling is
enabled or in buses through
which the first or last address
must pass.

Multiple selection decoder Always found.

Dynamic coupling Always found.

Aliasing between bits in
same word

Refresh problems

Always found if coupling is
enabled.

Always found if delay is

sufficiently long and standby
reads do not mask the problem.

Pattern sensitive faults Not found.

The delay parameter specifies the amount of time that the test
waits between sweeps. This delay can be increased to find
faults related to the dynamic memory refresh circuit.

The mask parameter provides a convenient method for testing
the parity bit of memories so equipped. First you perform a
testramfull test with a mask that tests all valid data bits. Then
you do a second testramfull test, but use a mask with an odd
number of bits set. In addition, this second test is done with a
line of a clip module connected to the output of the memory
parity tree. The DCE condition is generated by using a compare
command with a compare string only one bit long, which checks
for the desired logic level at the parity tree output.

testramfull-3

testramfull

The procedure for testing memories with error-correcting codes
is similar, except that you should choose a mask such that
toggling the bits specified by the mask will cause all the check
bits to toggle.

The coupling test verifies that, for every word, each pair of bits
in that word can store opposite values. For many memory
systems, the coupling test will not be necessary since the pre-test
checks for this with the first and last addresses, even with
coupling disabled. However, for some memory systems,
enabled coupling will be required in order to have a fully
conclusive test.

You can specify an exhaustive check for coupling between bits
in the same word (shorted data bus lines manifest as this fault at
every address) by enabling coupling. For an eight-bit space the
values 55, AA, 33, CC, OF, and FO are written to every word
and read back. Wider spaces are similar.

Related Commands:

fails, passes, testramfast

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

testramfull-4

testromfull
function

Syntax:

testromfull addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep>, sig <expsig>

testromfull (<addr>, <upto>, <mask>, <addrstep>,
<expsig>)

Syntax Diagram:

testromfull _ addr <addr> , upto <uplo>

L , mask <mask > _I

ve. — , addrstep <addrstep> __ , slg <expsig>

Description:

Verifies that the signature data contained by a range of ROM
matches the signature obtained from a correctly programmed

ROM.
Arguments:
addr Starting address.
upto Ending address.
mask Bit mask of valid data bits.
(Default = SFFFFFFFF)
addrstep Address increment.
expsig Expected signature.

Example 1:

testromfull addr 0, upto $7FF, addrstep 1, sig
$B826

testromfull-1

testromfull

Example 2:

testromfull addr first, upto last, mask $7C,
addrstep 4, sig $31BC

Remarks:

The ROM test (testromfull) verifies that the signature data
contained by a range of ROM matches the signature obtained
from a correctly programmed ROM. If the measured signature
does not match the expected signature, a diagnostic routine
attempts to locate the fault.

As with all signature-based schemes, there is some probability
(over the space of possible faults) that a faulty ROM will still
have the correct signature. Only one in 65536 randomly chosen
faults are missed. However, all faults that are confined to one
bit-slice and 16 or fewer consecutive addresses are reported.

Should the signature be wrong, a diagnostic attempts to ascertain
a likely cause. The following conditions may be reported as
possible problems:

® Abitslice all zeros.

d A bit slice all ones.

® Two bit slices identical.

d An address bit ineffective.

Related Commands:
fails, getromsig, passes

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

testromfull-2

threshold

function
{EEE-LAA

Syntax:

threshold [device <device list>] [, level <level
name>]

threshold (<device list>, <level name>)
threshold ()

Syntax Diagram:

()
threshold _J__ device < device list >
|— level <level name > __]

< <
4 ' g

Description:

Sets the input threshold levels for the probe or an I/O module.
The allowable levels are "ttl", "cmos”, or (for the probe only)
"rs232". "ecl" is allowed for the probe if ecl capability is

installed.
Arguments:
device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")
level name I/O module threshold levels "ttl" or

"cmos".

Probe threshold levels: "ttl", "cmos", or
"rs232" if ecl capability is not installed.

threshold-1

threshold

Probe threshold levels: "ttl", "cmos",
"rs232", or "ecl" if ecl capability
installed.

Example 1:

mod = clip device "al", pins 24
threshold device mod, level "ttl"

Example 2
threshold ("/modl"™, "ttl™)

For More Information:

o The "Overview of TL/1" section of the Programmer’s

Manual.

threshold-2

toggleaddr

function
{EEE-LA0
Syntax:
toggleaddr addr <address>, mask <mask>
toggleaddr (<address>, <mask>)

Syntax Diagram:

toggleaddr addr < address > , mask < mask>

Description:

Performs a series of read functions to stimulate the
microprocessor's address bus. For each 1 in the mask, two
accesses are performed: one at the address with the masked bit
set and one at the address with the masked bit cleared.

Arguments:

address Address.

mask Bit mask of address bits to toggle.
Example:

toggleaddr addr $1004, mask $25
! addr 1004 hex = 0001 0000 0000 0100
! mask 25 hex = 0000 0000 0010 0101

toggleaddr-1

toggleaddr

The system performs a series of six reads as shown below: '

read addr $1004
read addr $1005

read addr $1004
read addr $1000

read addr $1004
read addr $1024

Remarks:

Accesses are made in pairs for each bit in the mask, first at the
original address and then at the address with the bit toggled.

The number of read’s is equal to twice the number of bits set in
the mask. The data read is not returned.

A 9000-series toggle address (ATOG) performs the equivalent
of a toggleaddr for a single bit. Therefore, the following pairs
of commands are equivalent:

9100A/9105A 9010

toggleaddr addr $100, mask 1 ATOG @ 100 Bit 0
toggleaddr addr $100, mask $10 ATOG @ 100 Bit 4

For More Information:

i The "Overview of TL/1" section of the Programmer's
Manual.

toggleaddr-2

togglecontrol
function

Syntax:
togglecontrol ctl <control word>, mask <mask>
togglecontrol (<control word>, <mask>)

Syntax Diagram:

togglecontrol ctl < controlword > , mask < mask >

Description:

Performs a series of writecontrols to stimulate the
microprocessor's control bus. For each 1 in the mask, two
writecontrols are performed: one with the masked bit set, and
one with the masked bit cleared.

Arguments:

control word Control word.

mask Mask of control bits to toggle.
Example:

togglecontrol ctl 1, mask $41
The system performs two pairs of writecontrols:

writecontrol ctl 1
writecontrol ctl 0

writecontrol ctl 1
writecontrol ctl $41

toggiecontrol-1

togglecontrol

Remarks: '

Writes are performed in pairs for each bit in the mask, first with
the original control word and then with the toggled value.

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

togglecontrol-2

toggledata

function
iEEE-LA0o
Syntax:
toggledata addr <addr>, data <data>, mask <mask>
toggledata (<addr>, <data>, <mask>)

Syntax Diagram:

toggledata addr <address > , data <data> , mask <mask>

Description:

Performs a series of writes to stimulate the microprocessor's
data bus. For each 1 in the mask, two writes are performed:
one with the masked data bit set and one with the masked data

bit cleared.
Arguments:

addr Address.

data Data value.

mask Mask of bits to toggle.
Examples:

toggledata addr $EED0O, data $AA, mask $55

The system performs:

write addr $EEDO, data $AA
write addr $EED0O, data S$AB

write addr $EEDO, data $AA
write addr $EED0, data S$SAE

(example is continued on the next page)

toggledata-1

toggledata

write addr $EEDO, data $SAA
write addr $EEDO, data $BA

write addr $SEED0O, data S$SAA
write addr $EEDO, data SEA

Remarks:

Writes are performed in pairs for each bit in the mask, first with
the original data and then with the toggled data.

For More Information:

d The "Overview of TL/1" section of the Programmer’s
Manual.

toggledata-2

token
function

Syntax:

token str <string> [, seps <separators> [, from
<start index>]

token (<string>, <seps>, <start index>)

Syntax Diagram:

token str < string >

l_ , 80p8 < separafors > _I

L_ , from < start index > _]

Description:

Implements token scanning from strings, where the tokens can
be distinguished by the presence of one or more separator

characters.
Arguments:
string The string expression that is being
scanned for a token.
separators A string containing the set of separator

characters that can separate token values.
Each character in the set is considered

equivalent to all other characters in the set.
No character from the separator set is

included in any returned token string value.

The default set of separator characters is
(newline, linefeed, space, tab).

token-1

token

start index The index in the string to start scanning
for the next token substring, where an
index value of 1 corresponds to the first
character in the string. If the start index
is not supplied, scanning starts at the
beginning of the string unless the
previous call to the token command
supplied the same string argument. In
that case, scanning continues at the
position in the string immediately
following the last returned token.

Returns:

The next and largest possible substring from the source string
that does not contain any characters from the set of separators,
skipping over any initial separator prefix sequence. If there are
no more substrings that do not contain non-separator characters,
then an empty string is returned.

Examples:

Given an arbitrary input string in_string, extract the "words"
(where a word is any non-white- space sequence of characters),
assigning up to 10 words to the elements of a string array:

declare string array [1:10] woxrds

! extract the first word

next_word = token str in_string, from 1
i=1

loop while (next_word <> ")

if (i <= 10) then
words [i] = next word

! extract the next word
next_word = token str in_string

else
next word = ""
end if

i=1i+1
end loop

token-2

token

Suppose an IEEE-488 device outputs a single floating-point
number string value, with an arbitrary number of leading spaces
and a carriage return, linefeed character sequence after each
value. The following program example strips the whitespace
(the spaces, carriage return and linefeed), then converts the
remaining string to a floating-point number. If the device is
opened with the termination character of the channel set to
linefeed, the problem reduces to stripping the spaces and the
carriage return:

declare numeric ieee_chan
declare numeric term chan
declare string val_string
declare floating val_number

term_chan = open device "/terml"
ieee_chan = open device "/ieee/1™, term "\0OA"
print on ieee chan, "val?"
input on ieee_chan, val_string
val string = token str val_string, from 1
! strip whitespace
if (isflt(val_string)) then
val number = fval(val string)
print on term chan,
"value is ", val_number
else
print on term chan,
"received a bogus value: ", val_string
end if

Suppose an IEEE-488 device outputs analog measurements in
the following format:

chan(<nn>) :<ss8> <ffff...>

where <nn> represents a "channel number"” in radix 10, <ss>
represents a measurement status in radix 16, and <ffff...>isa
string representation of the floating-point measurement value.

The following TL/1 fragment extracts these various fields, given
the initial input string in the string variable meas_string:

meas_seps = "(): " ! the set of separators
! skip the "chan" substring
token (meas_string, meas seps, 1)

token-3

token

Remarks:

! extract the channel number
chan_string = token str meas_string, seps
meas_seps
if (isval(chan_string, 10)) then
chan_num = val(chan string, 10)

else
! measurement string syntax error
! detected
return(0)

endif

! extract the measurement status
status string = token str meas_string,
seps meas_seps
if (isval(status_string, 16)) then
meas_status = val(status_string, 16)

else
'measurement string syntax error
'detected
return(0)

endif

! extract the measurement value

value_string = token str meas_string, seps
meas_seps

if (isflt(value string)) then

meas_value = fval(value_string)
else
! measurement string syntax error
! detected
return (0)
endif

The token command is useful for separating the fields of an
input string from one another. Given a particular input string,
token can be called repeatedly to extract the fields of the string.

Related Commands:

isval, isflt

token-4

val
function

=)
Syntax:

val str <string> [, radix <radix>]
val (<string>, <radix>)

Syntax Diagram:

val e str <string >
‘._ , radix <radix > _I
Description:
Calculates the numeric value of the string operand using the
specified radix.
Arguments:
string A string which represents a number.
radix A numeric expression for the radix to
use for the returned number. Allowed
values for radix are 2, 8, 10 (default),
and 16.
Returns:
A numeric value.
Example:
x = val ("15",16) ! the variable x is set to
! the numeric value of
! hexadecimal 15
X = val ("15",10) ! the variable x is set to

! the numeric value of decimal 15

val-1

val

Related Commands:

Jfval, str, isval

val-2

wait
function

=

Syntax:

wait time <expression>

wait (<expression>)

Syntax Diagram:

walt __________ time < expression >

Description:

Causes program execution to pause for the specified number of

milliseconds.
Argument:
expression Approximate length of time in
milliseconds.
Example:

wait time 1000

! Generate a one-second pause (plus or
! minus about 50 milliseconds)

wait-1

wait

Remarks:

You must use wait commands carefully since they can cause a
program to pause indefinitely. The wait command cannot be
used to generate exact timing. The precision of the timer is
approximately 50 milliseconds; longer waits may result if the
9100A/9105A must service interrupts or perform other
operations.

For More Information:

wait-2

® The "Overview of TL/1" section of the Programmer’s
Manual.

waituut
function

iEcc-LAo
Syntax:

waituut maxtime <expression>
waituut (<expression>)
Syntax Diagram:

waltuut maxtime « expression >

Description:

Suspends TL/1 program execution until one of the following
conditions occurs:

® The pod encounters a breakpoint.
¢ The DCE condition occurs.

® The number of milliseconds specified by the expression
expires.

Argument:

expression A numeric expression for the maximum
timeout limit value in milliseconds.

Example:

runuut addr $FFOO
waituut maxtime 4000 suspends TL/1 program
execution for 4 seconds
while the UUT is controlled

by its own program

waituut-1

waituut

Remarks: ‘

After executing runuut, you must invoke either haltuut or
waituut to regain control of the pod before executing other
statements that send commands to the pod.

The command waituut (0) is equivalent to haltuut ().
The waituut command is usually preferred over continuous
looping using polluut because it frees the 9100A/9105A
processor for other functions.

Related Commands:

haltuut, polluut, runuut

For More Information:

i The "Overview of TL/1" section of the Programmer's
Manual.

waituut-2

winctl
function

. Syntax:

winctl channel <channel expression>, position
<position>

Syntax Diagram:
winctl

channel < channel expression > , posltion < position >

Description:

Controls the window position for the specified channel.

Arguments:

‘ channel expression A numeric expression to define a
channel opened to write on the desired
window. Remember that /terml and
/term?2 are also considered windows.

position The position is one of the following:

"front" The window covers all
other windows.

"back" The window is covered by
all other windows.

“hide" The window is invisible.

"unhide" The window becomes
visible.

winctl-1

winctl

Example 1:
winctl channel chanl, position "front"

Example 2:
winctl channel chan2, position "hide"

Remarks:
A window in the front covers all other windows. A window in
the back is covered by all other windows. A window when
hidden becomes invisible, but remains in the same position on
the screen.

Related Commands:

open

For More Information: ‘

i "The Overview of TL/1" section of the Programmer’s
Manual.

wincti-2

write
function

Syntax:
write addr <address>, data <data>
write (<address>, <data>)

Syntax Diagram:

write addr <address > , data <data>

Description:

Writes the specified data to the specified address.

Arguments:
address Address at which to write.
data Data to write.
Examples:
write addr $5567, data $21 ! writes hex 21 at
! hex address 5567
write data $34, addr S$CDD3FF ! writes hex 34
! at hex address
! CDD3FF

write-1

write

Remarks: ‘

Refer to the pod manual for the microprocessor you are using to
find specific address and data formats.

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

write-2

writeblock
function

Syntax:

writeblock file <file name> [, format
<format name>]

writeblock (<file name>, <format name>)

Syntax Diagram:

writeblock . flle < file name >

, format «formatname > _]

Description:

Loads the contents of a file in a standard ASCII form (Motorola
S-Record format or Intel Hex format) into UUT or pod overlay
RAM. The file contains information about the starting address

and number of data bytes.
Arguments:
file name The name of the file containing the
required data.
format name The ASCII format in which the data

was previously stored. Either
"motorola" or "intel".
(Default = "motorola".)

Examples:

writeblock file "test lcd", format "motorola”

writeblock ("pgml", "motorola")

writeblock-1

writeblock

Related Commands:

loadblock, readblock

For More Information:

® The "Overview of TL/1" section of the Programmer's
Manual.

writeblock-2

writecontrol
function

Syntax:
writecontrol ctl <control word>
writecontrol (<control word>)

Syntax Diagram:

wrltecontrol etl < control word >

Description:

The writecontrol command writes the specified data to the
control lines of the pod.

Arguments:
control word Control word.
Examples:

writecontrol ($Al)

writecontrol ctl $13
Remarks:

Not all control lines are writable; the lines that are writeable
depend on the type of pod you are using. The lines are asserted
for a moment while drivability is tested. Refer to your pod
manual for more information.

writecontrol-1

writecontrol

Related Commands:
readstatus

For More Information:

¢ The "Overview of TL/1" section of the Programmer’s
Manual.

i The Fluke pod manual for the microprocessor you are
using.

writecontrol-2

writefill
function

=)
Syntax:

writefill addr <address 1>, upto <address 2>, data
<data>

writefill (<address 1>, <address 2>, <data>)

Syntax Diagram:

writefill addr <address 1> , upto <address2> , data <dala>

Description:

The writefill command writes the specified data to each address
within the specified address range.

Arguments:
address 1 Starting Address.
address 2 Ending Address.
data Data value.
Examples:

writefill addr $1000, upto $1FFF, data $21

writefill (0, $7F, $123D567E)

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

writefill-1

writefill

writefill-2

writepatt
function

=)

Syntax:

writepatt [device <device list>] [, mode <mode
name>)

writepatt (<device 1list>, <mode name>)
writepatt ()

Syntax Diagram:

)

writepatt __[____ device <« device list > —I
.. mode < mode name > _]

——e ey ——]

Description:

Overdrives the specified sequence of patterns through the I/O
module. The pattern to be written to each pin is stored
beforehand using the storepatt command.

Arguments:
device list I/O module name, clip module name,
reference designator, or combinations
of these.
(Default = "/mod1")
mode name "pulse”, or "latch".

(Default = "latch")

writepatt-1

writepatt

Example:

! driving a 7400 through its truth table:

mod = clip ref "Ul, pins 14

clearpatt device "U1l"

storepatt device "Ul", pin 1, patt "0011"
storepatt device "U1l", pin 2, patt "0101"
storepatt device "Ul1", pin 4, patt "0011"
storepatt device "Ul", pin 5, patt "0101"
storepatt device "Ul", pin 9, patt "0011"
storepatt device "Ul", pin 10, patt "0101"™
storepatt device "Ul", pin 12, patt "0011"™
storepatt device "Ul", pin 13, patt "0101"

! internal sync mode required for writepatt
sync device mod, mode "int"
arm device mod
writepatt device "Ul", mode "latch"
readout device mod

Remarks:

The writepatt command requires that the sync mode be set to
"int".

The maximum pattern depth for writepart for each pin depends
on the number of I/O modules used:

Number of I/O Maximum Pattern
Modules Used Depth

1 255

2 128

3 85

4 64

Appendix E, "I/O Module Clip/Pin Mapping," shows, for each
clip module, which I/O module pin is connected to each clip pin.

writepatt-2

writepatt

Related Commands:
storepatt, clearpatt, clearoutputs

For More Information:

¢ The "Overview of TL/1" section of the Programmer'’s
Manual.

writepatt-3

writepatt

writepatt-4

writepin
function

Syntax:

writepin [device <device name>] [, pin <pin
number>] [, level <level>] [, mode <mode>]
[, refpin <refpin name>]

writepin (<device name>, <pin number>, <level>,
<mode>, <refpin name>)

writepin ()

Syntax Diagram:

()
writepln __I__ device < device name >]

| pln < pin number >
L level <level >
i _mode < mode >
| retpin < refpin name >

< <
d ’ .

Description:
Sets the specified I/O module pin to the desired state by either
latching or pulsing.
Arguments:
device name 1/O module name, clip module name, or
reference designator.
(Default = "/mod1")
pin number I/O module pin number.
(Default = 1)
level "1" for high, "0" for low, and "X" or

"x" for high-impedance.
(Default = "0")

writepin-1

writepin

mode "latch" or "pulse".
(Default = "latch™)

refpin name Specifies the device and pin in string

format. The refpin argument is used to
override the device and pin values.

(Default ="")
Example 1:

! Latching I/0 module #1, pin #40 HIGH

writepin device "/modl,"™ pin 40, level "1", mode
"latch"

Example 2:

! Pulsing I/0 module #2, pin #20 LOW

writepin device "/mod2", pin 20, level "0", mode
"pulse"

Example 3:
writepin refpin "U26-F", level "1", mode "pulse™
Remarks:

If the string value for refpin is not a null string (""), the values
of the device and pin arguments are ignored.

Appendix E, "I/O Module Clip/Pin Mapping,” shows, for each
clip module, which I/O module pin is connected to each clip pin.

For More Information:

® The "Overview of TL/1" section of the Programmer’s
Manual.

writepin-2

writespecial
function

Syntax:
writespecial addr <address>, data <data>

writespecial (<address>, <data>)

Syntax Diagram:

writespeclal addr <address > , data <data>

Description:

Writes the specified data to the specified virtual address. This
allows access to the virtual addresses that, in some pods, are
used for special operations. This command should only be used
when you know that the normal write command does not
provide the required special operation.

Arguments:
address The virtual address where data will be
written.
data Data to write.
Examples:

writespecial addr $F0000018, data $21

For More Information:

i The "Overview of TL/1" section of the Programmer’s
Manual.

® The Fluke pod manual for the microprocessor you are
using.

writespecial-1

writespecial

writespecial-2

writevirtual
function

=

Syntax:

writevirtual extaddr <ext>, addr <address>, data
<data>

writevirtual (<ext>, <address>, <data>)
Syntax Diagram:
addr <address> , data <dafa>

writevirtual extaddr <ext> ___ ,

Description:

Writevirtual is a complete replacement for the obsoleted
writespecial command. The writevirtual command writes the
specified data to the specified virtual address. This allows
access to the virtual addresses that, in some pods, are used for
special operations. This command should only be used when
you know that the normal write command does not provide the
required special operation.

Arguments:
extaddr Extended address bits.
address The virtual address where data will be
written.
data Data to write.
Examples:

writevirtual extaddr 0, addr $F0000018, data $21

writevirtual-1

writevirtual

For More Information: '
® The "Overview of TL/1" section of the Programmer'’s
Manual.
¢ The Fluke pod manual for the microprocessor you are
using.

writevirtual-2

Syntax:

writeword
function

=

writeword [device <I/0 module name>] [, word <word

number>]

[, patt <pattern>]

writeword (<I/0O module name> , <pattern> , <word number>)

Syntax Diagram:

writeword

0

device « VO module name > l

Description:

L word < word number >
| patt <pattem> |

4 ' >
« d

‘ Writes a data pattern to a group of I/O module pins. The group
of I/O module pins is set using setword.

Arguments:

I/O module name

word number

I/O module name ("/mod1”, "/mod2",
"/mod3", or "/mod4").
(Default = "/mod1")

This specifies the pin grouping to use in
writing out the word.

(Default = 1)
pattern Specifies the levels to be driven. Valid
values are 1 (HIGH), 0 (LOW), and X
or x (driver off, 3-stated)
(Default ="0")
Example 1:
‘ writeword device "/modl", word 4, patt "10X"

writeword-1

writeword

Example 2:

writeword device "/mod2", word 1, patt "000000000000"

Remarks:

If not enough levels have been specified in the pattern, they are
assumed to be LOW. If too many values are specified, the
leading values are ignored.

Related Commands:
readword, setword

For More Information:

i The "Overview of TL/1" section of the Programmer's

Manual.

writeword-2

Appendix A
ASCIl Codes

A-1

CHR HEX DEC

NUL 0 0
SOH 1 1
STX 2 2
ETX 3 3
EOT 4 4
ENQ))
ACK 6 6
BEL 7 7
BS 8 8
HT 9 9
LF A 10
VT B 11
FF c 12
CR D 13
SO E 14
SI F 15

DLE 10 16
DC1 11 17
DC2 12 18
DC3 13 19
DC4 14 20
NAK 15 21
SYN 16 22
ETB 17 23
CAN 18 24
EM 19 25
SUB 1A 26
ESC 1B 27
FS ic 28
GS 1D 29
RS 1E 30
us 1IF 31

A-2

CHR HEX DEC

wn
vl

+ ¥ =R 0P e

-

o OO W EFE O

WV A

20
21
22
23
24
25
26
217
28
29
2A
2B

2¢c

2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

CHR HEX DEC

P SN X ECCHOMIOUWOZREPERGHIOREBUOOD Y ®

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
S5A
SB
5C
SD
SE
SF

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

CHR HEX

’

==~ N RECETURQTDODEHAULRERTAOHO QOO

RUB

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
cC
7D
71E
TF

DEC

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Appendix B
Control Codes for Monitor
and Operator's Display

ERASING B.1.

Cursor to end-of-line ESC [K

or ESC [0 K
Beginning-of-line to cursor ESC [1 K
Line containing cursor ESC [2 K
Cursor to end-of-screen ESC [J

or ESC [0 J
Beginning-of-screen to cursor ESC [1 g
Entire screen ESC [2 J

NOTE

Since the ESC key cannot be entered from the
keyboard, substitute a backslash followed by
the ASCII code for the ESC character. The
example below erases the entire screen:

Print "\1B([2J"

B-1

CURSOR CONTROL SEQUENCES

Up ESC [Pn A
Down ESC [Pn B
Right ESC [Pn C
Left ESC [Pn D
Direct cursor addressing ESC [Pl;Pc H
Where Pl = line number or ESC [P1l;Pc £
and Pc = column number
Index ESC D
Next line ESC E
Reverse index ESC M
Save cursor and attributes ESC 7
Restore cursor and attributes ESC 8
DISPLAY ATTRIBUTES B.3.
Change display attributes ESC [Ps m
Where Ps = 0 (All attributes off)

1 (Bold)*

4 (Underscore) *

5 (Blink)

7 (Inverse/Reverse video)
* Not available for the operator's display.

DISPLAY MODE SEQUENCES B.4.

B-2

Insert mode enabled ESC [4
Replacement mode enabled ESC [4
Auto Line-feed mode enabled ESC [20
Auto Line-feed mode disabled ESC [20

Auto Wrap mode enabled
Auto Wrap mode disabled

Text cursor enabled
Text cursor disabled

TAB STOPS

Set at

current column

Clear at current column

Clear all tabs

EDITING CONTROL

Insert
Delete
Insert
Delete

line
line
characters
characters

ANNUNCIATOR CONTROL

Set Annunciators

Where Ps =

ESC [2 7h
ESC [271
ESC [2 25 h
ESC [2 25 1
B.5
ESC H
ESC [g
or ESC [0 g
ESC [3 g
B.6.
ESC [Pn L
ESC [Pn M
ESC [Pn @
ESC [Pn P
B.7.
ESC[Psq
0 (All Annunciators Off)
1 (Busy)
2 (Stopped)

3 (Storing Seq)
4 (More Softkeys)
5 (More Information)

6 (Alpha)

When control returns from TL/1 to the operator interface,
the operator interface sets the annunciators back to the
correct state.

BEEPER CONTROL B.S. .
Set Beeper ESC[Pl; Pt y

Where Pl = length in milliseconds.
The actual length is set in
increments of 16
milliseconds with a
maximum of 1.008
seconds.

and Pt = 0 Bell 1
1 Bell 2 (Default on
power up)
2 Bell 1 and Bell 2

Setting the beep tone from the operator interface restores
the beeper to Bell 2.

SPECIAL DISPLAY CHARACTERS FOR THE
OPERATOR'S DISPLAY B.9. .

Two-digit IC pin numbers (in GFI displays) are displayed in
single-character cells. The special codes for these two-digit
numbers are generated by this formula:

number + 95hex.

For example, the number 23, as displayed below, would use the
hex code AC.

+-—+
12 |
| 31
+-—+

B-4

. Other special symbols used in displaying ICs on the operator's

display are shown below.

Symbol Hex
IC Head F9
IC Body FA
IC Upper Leg FB
IC Lower Leg FC
IC Long Upper Leg 94
IC Long Lower Leg 93
Up Arrow FD
Down Arrow FE
Bidirectional Arrow 92
Left-adjusted Vertical Bar FF

DISPLAY CHARACTERS FOR THE MONITOR B.10.

The 9100A/9105A may use either the Fluke monochrome
monitor or a customer-supplied IBM-compatible color monitor.
Both ASCII characters and special graphics characters may be

‘ displayed on either type of monitor. The following pages show
the 9x10 pixel character cells used for monochrome display and
the 9x9 pixel character cells used for color display. The number
above each character represents the hexadecimal control code
required to use the character.

B-5

Monochrome Font, ASCIlI Characters

20 28 30 38 40 48
00000D ‘DEDLU% Oomoon0n Qgogon 0
HHaE] e B et O
TOsCOT0n DRCODSOND QEOCOOE) QJomsesc Qo 0
oo ORICNT CCESRRNCD CEORCCED CAm
aane manallls nen o b Saueannalll Shaes
MOOUB00 [DUEEs0D0 OUamsEs ODREENEE0 0N
00! na 0000 00000000 OO
)0 JO0O0 U000 0000000 JK
21 29 31 39 41 49
0000000 (OO0 U (0000 0000000 000000000 O0000oCK
OIOe0O00 O00RO0ON0 0QOOWO000 OOESESEO] OQOESE000 OORes
COO0ROCT aTn DEREODD DEOOOOE] OoWCDORD Ooom
auainass BiHE HHHHSHHY Ofdeaeasd HEdd-ed OHHHS
OOOR000 DONOD OONOD0 DCOODE] Qsmesses) OO0
OO00000 wul N wo s weisl alwsie o/ wiiiel win 56l 8 el 0
Sanunsns B Sunnsinsfllssussinas
X K 100000 10000000 JOX [| X
22 2A 32 3A 42 4A
] JilLlJ 0[] 1000000 000000000)00 Juiju_j[[]
HHedatd tHedodend DafAAWSsH Hbssdddd HeRMARAH
ODURESOO0 0DODO0DeO OOOeetOOD OmO0000e0
ONENESES0 COOREEEO0 00 ONEERENCT]
HHaeH wan Tssuallls eavas ol s
(OO0 ONESSSES OCOSECOCO OEasEss0 OUw
IO 0 0000000 1000 0000000 aog!
X)X 00000 1000 1000000 1000000
23 28 33 38 43 4B
000D 00K 000 Ul 000000000
0 OomEsER0n 0L EIDIIIIIEI: ORJO0ONOD OOEEREEO]
DRCOORG JoooonD w mwnsl s wn e suslisl sunan s
el i e L
COO000CH (000 OEJN000 OeeCOs0
ORODOND 0000 0RO B WA | SaEaed
M B Unaanet
0000000 0DR0O0L 10000 IO 1L 10000
34 3C 44 4Cc 54
100 1000000 OUOC00000 iU ﬂluilr %
HOSED HH MW by i
CORL OCOm0 #0000 0N Oooomonon 0 00
ilD{IllD ,;E]Dll D000 [QroUecon LOCOeo00
WY HROE TGN O TR i
J®00 00000mO00 OmEsEssn Dliii?liliL 0000M0000 080
100 000 000000 00000] 1000
L X 000000 1000000 0 JOO(
25 2D 3 3D 45 4D 55 SD
00000 OO0 00 L0 LK 100 L1000 L
OREI000R0 g:-n nc nvesensofier (11111 §ID . in 8] [DEREEE]
CNS000R00 % ooy QEoO000 RECCURED O =E LIN0
Tt e 31!% MY pewtd Ol e e
COCR00000 SEREREN] N Ceiwsn s aiel s I;IE_ 00
OOR0C0eR0 30000 Ei000e] Qeoonooe Seisa s
o ARRARN) QRN A
JOK 100N llllllllllll JOOOO00CK)8 § l 10000
26 2E 36 3E 46 4E SE
(00N QU000 L0000000 JOOICK (0000000
TN iy I 5 . ﬁ;@é ;
[aonanen 0007 OE0Ro0Nd CORC0R00
i [T noan auy l;‘%ﬁ (1]
B e %Eﬁl aaun jasasile A 5§
(LNSNS080 CODWEOO00 [ommeasm veu .]
OO0 X 0000 18 Al 'S | 1K :i
27 2F 37 3F 47 4F SF
D .'\: i :'u'i'E IIIIIIE 1] B #L!liu-l¢
A OB OOOnCooe ﬂ!; B wnei
atl seise e H'LH o 1 I i
DODeO0000 COOOsOnO0 000 e T
D Qoo n %L,, s, 870
a qH J

I O 1l JUOOUO0OLL 0N

000000 IO JCOCIOCICT. D000

78

70

68

RS SofEeeeess BHRERREH o e OmomCe om0
e e e S e
= H _ HEEEH | = H I = Pamm
R o EHRmssoEn < CoomCie SRRREHRE REEe x BEEmo
Doy SR s ﬁﬁmmwm_mm | B YRR iizsnd
ROEERER oEno= e DERE-=rerH : FEReR Pumct et
cEERRas et R o RO et o RS - B
HRIRRES BORERRRERR BRRRRERRR REERR SEEEE FRgeeEEn BREREEE FRAEERR
CummsSTh CopoooECD pecmsssmen oQOCosth COONRD DHOEOOERR ameRRD DOCQRmeCTH
gecHHHEH HedaRseeHd s HosHH HERRARRRH ERRRRSARR SHHRdERRH HRRROESREE
MuSaNsH o B S D oEsseeR QEHTHERE o Eemaey wiHERa o e
FE esates REERREE FERREER FERSRERRd sesas! e BRARRRERER
1| HH 111 m HH o] T 1 | m HH _.mmmmm m.....mmm BH N | (= H ﬁ.mr- Wm ..Em
=0 SooeCscecH SooEcooEY BESHRES Bomes Rymse=rn DRoumLoon poeroees
=== _CREEomoRcS FocOmosScn | QORCoURDS | Copmcooscn | poosceomco | EoRsSSeOn o BRORLaecCR
| L7- OI0O0O0O0O o ODO0OD0O0O0O00 17-) 00000 L7- 10000 L”- OO W OO0O0O0000x - I ICKC)

B-7

80 88 90 98 A0 A8 BO 0-0 B8 u-U
TG PARGE A e W
OOCREA000 DOUeEeEsd 080 AR oeoaoeng
CONSESSCD OO S QECCOOA0 qoeceCn
Rainan o e o as au s A sRs Baaniue auan lnan
OOORg000 Qo000 B0 08000800 0000000 oos0O0e0d
O0ooe0c0g O OONCCNCD OE-CCOSCO NNNSNSS EECOCCOSN
:HFH FHF 1000 HHHMHHF" :]FHMB!IFF HH}EHHHEH 000000000
81 89 91 99 A1l A9 Bl o1 B9 U
awas-wanslavaewavalilavas e slensuel UE';: OOnasaaas Bamasanss H%E‘E‘EEEE i
A BHe] R S d A HHSd
DOO0RD 0000E0000 OmOoeaosD BORO000 OO [saj] nann 080000
00000 EREREO lEI:DIIE 3.==gcgc=] goooscoon coooomoo0
HnlﬁgE aEnEgatn O0m auannjun) Hllll aue 9399:-9
D0O0e0000 000000000 OOEsEsses BeSesSEES OO0000 0
0000! 0] 1000000 00000003 0a00J0000 O000ac 000000030
82 8A 92 lenitail 9A A2 AA B2 0-X BA U-X
HoatH Weasasass Ohs Tl
ODooosOR] 00 aom 000m00000
waus jeues oos Lo mmagiai
Cunind Nimwagnen Hessaine 0R'HT Him IR e
008000000 aom 0ooomg 0ooE0g
[T1{[][[un oom [T ([8]
QER000ag HBI Q000 0000
U000 [] [BuEN] LUUUL
83 8B 93 righttail 9B A3 AB B3 0-U BB uU-1
QOOwoOO0 Q0O0E0000 T e 8O0 0000 0000
O0O0e 0 LocoEa0 s g [Jug] 58 EEESAEERE
:::HHEHB HHHHEHH el lauan Hasl ussllseasa nas
QIooeI000 000O0e1000 000000000 Osesonnd 00 0O00E000C OoOom
O00OsSses SENGEENEE BEREEEE]]D!UIH=E= ey E%D% I aooe
A Hesa : a7 dsisasasn Bnt
080000 eseesssEn B00 000000000 Ooa
OOsEs00 000000000 800 DO0DDODO0 00X
84 8C 94 9C A4 AC 1-1 B4 X-X BC vu
nunssansalills weeassolles T R L TaRiRssns
(OR0ONO00 OEO0D0000 OOe000 0
=%Dl=Ciq; Jl;itlc__ u] 8 et arELLe
e ilElhi! Heee HH8
0 0J0Je0000 0O0O0sss0d ORJOEOOE] 008 00000
0 COOEYOD CODEOOOD QOCOESEED oo (T 11]]
D EBEBIB::H FHFHFIM I ufﬂlt BBII E B
gll]) 95 9D AS AD EDEEED BS X-0 BD 1.0 slow
O0JRO000)00 DO0000C 00000000 000 000ac
eajen alna) 00000 meR000L SESSRNECL SENSSCUD ana
TR e e d S e
OOOE0000 OoEesJo0d LOsOs0000 [] 000 fan O0CNeI000
ERERSCO0L OUNENAREE BERBOWD I[] QOoOm QO8] rﬁ;E
THEH Bl DK HOl AT o
0oaoe0 anaun | 0| 080 0 10000 0000 000
0000w0l 10000 JOD000w0 RO0 o0 0000 000
8E 96 9E A6 AE 1.x B6 xa BE 0-1 slow
A Eansanallls sanas sl | a8, ,-ﬂ'L{JE'Hh'H T
Sjeasn IIIZJE OO a Aless OOOoE00C0 8
%L“ D:)ﬁﬁ wa OOoe00m i_:m COCOoeCn
iy s e !E LR naflleiss i1 huass
00 IB B = é SEBEES %l; wa BB:! 0O
o Eo seatad eYTIOE! RO pe
'3'3'8 H ' X 5555&! uu:
9F A7 AF 1.u B7 x.u BF
00000000 00000 GeEEEEEes
8880 auEageEes OO E]lll_l ll=l=====
n :;}. nn ::3 HF:“ ==l=lllll
[ass lue xealy e sEpEEsEss
iﬁ 1) .Ji us e
o ees as § FER HH
[LT [][]wmf 00 00 11171
1000000 000000000 000 00000 [1171

o & o - o Eslllllll
00DOONn 000000000 Om00w 000000000
‘ alsninas oofllsiosissssssfille o8 eheisviie EEHEEIEE
wanl (o laalllzlas |ianasllla s8]] SWEH BHReHT
NOODE0D 00000 oma0m sEEEEEREl OEO00ORO0
J000R00 100 DlDD: 00000000 ORc0o0e00
e Esanusand B:BBI d
000000000 000000000 Owmdce
C1 (o) D1
eaa us apsla uisala v) I=DDIEIJI=
HHERASAY MAsammens BR--R-ONG
OOs0RE000 0. [T ni T |]
=]=Dl[!ll;=; COnCanO00 =IDDIED== 000
A AHEe B8R Hes HHEA
0o 00000000 esOOEO0eR OnOosJeRg
OONENEENE NSEREEEEE BEOORCORS O000sJme0
0o 0 Ee00s00=s 0000m0000
C2 CA D2 E2
000000 00w OoRONwO0
EREREERD OON OomOnoe0
mn:c 0 EID= DD:EDEIIED
ao JLLIDIE: BBlbiiE 0o BBI BIE sanamnuEn
OOOEEOR00 COEOESO00 OOmO00s00 EBRENCOO0
0 i%ll[l]]l[:; O0m0] ﬂﬁpﬂﬂ:[ﬂ ﬁm:g o0
s HEE[ana e 88
0O0DO0O0O0 OO OOe000e0 O000R0000
Cc3 CB D3 DB E3
0QODOD00O0 o0 u
v it :
OORO00 000000800 0 O
0 21=LlillilF 0 O ;D==D=ED 0 O
;3- IIC:H OO0 qIE 0 O
0OsO0 800 a]
0 w0]
00 Dl
CcC E4
0O000D0O0 000
[T 00one0oao
] :lEDL'::: OEsORCCL
saal anan Y b i1
[T T aiae 0
00 (0 na
i b
CD DS DD ES
LELLLLLL L] 10000 ID%EI =I
T T | ik
w uninn nReves a ol eisss as s eashen u
et e = = 5 = M M
T e D @%ﬁ;@ i 1
oo B4} ORBNONEEC B0 EEERCR0 OO0RERO00]
seniaEnnl ODO0O00 0opomd 000000000 [
DOD000000 0000 00000000 1D000000¢ 00000
CE D6 DE E6 EE F6
TR s TR RREER OER HEE
383%11.1 AREEREEEE EEDI%II] %mlg%ﬂ E[.] %E DID][I]EE 0
o (naus sl ass] B@@%EE Ransl hes EE‘SIB@Q e %ISH@;
OONONS000 OEJ0O0Oe0 O 0000 %%ID[I] BON0 a8 [[sus aa sap
DD=DIEE 00 OEI000R00 nnn:n 0000 lIlD:l:DlIlEl OROODOND0 OONEEEO00
v B R e :
000000000 UO00000C0 000 0 000000C 0081000 0000 IARREAN]
C7 E7 EF F7
I=I§[E] ; 0O - 000000 :
» - = : # . et o =
B0 0 ,EBI 00 SEBN00
Lt ID.ED Ld LK i-—-—— 000! S e oo e eedtd
;zﬂluulg H RARAR ﬁEIEH 3 '3“[%::
‘ ooooooe 0 BEDLI] (TiamEs
ERsEReR] 000 m [T
000000000 L0000 TTTTT{T]

B.8.3.

Color Font, ASCIlI Characters

alsiss
UUOLLCRLK

S alemea (= EEEEEE- wHEHEH= = =/mm] | =84
NEScUsSD OEQoSERRR sRoONsn EonEcn goRLery o semmmsscn OO
Shafe-d HoL=m==co EoomccRy SSEOOREDD LR SERE ML
owBIHASE o @BHAHHAH <SSREHRSH o8SA8SSSE omBd ofBdAdH o HdN &
oma CRmss_m- CEsccCstd Qegomsoo EesmmsCiC EmssoCOY Emmssel
Fser SHm=C=cs EgoEetocn sEcneT B s =0 e gmr
BUOECHE EnoEs sohEoy shseeen ERRORR BREOOEERE SRRt Beneo
cREamassl] -[CEmssscon oSssesss ofmscosOD ACQEHRRDY GASSSEESN oESesSO o Eeaseso
EEssmss s OOOOOEODS mssesson Goopeo- 2 Essmsssn pEssas= (CEmssei
BE3 Soamasn At HEEROEE =5 Hfe HHACH BSEEReE
cRAMER o EEEE SO oAy ummmeRn CNSMURS RSNRRRT iRyt
CEEENER TR R R R R 5E R
SEEEr SpEE RS snss B el HU ST
AR oTHAL cimemeRL oDRANYL TSR cRRAME shAswRRR OERRRE
CEsome- pEmsmsCOC Do s BESERA gesgs: st ORe
S Bea os mo me EEe s Bl
ummmnmmmnm umﬁmmﬁmm 3 gesteatt = BEREE mmmm_ﬂﬂ 2 R SO sOeaE
HHesann-- o HenH=H Hes-ss-- BEEHeE88-H ™ mimm Han-we A B
GRSy OobrE SooshES soEhsn SesSemn Smmnn EoEves B
BohegsC | mssssesto SooSRT SOmocRn pADOR SNECCECR sooEeoE Soangcs
oERgTaESTD _E-ooomnS Acofscsth Ecoooomon pooss - BeasgmRY L ECOESCED | BoorCmor
o OO0OO0O000 ey OO0 oy OOOCO0O0O0 o OOO0O0O0O00 o OO0 o OODO00O000 () o O K
HEEEEHE HHEE HHsoEH- e a] HH= A=t B
ChPbReH BouEEdTd gesEsen HHERRS 2 aEs o3R B
AEScomon geSooEOCS goEssgy pEmssEoO =D s ==t SRe
wEEEEEE oHRHEN <BROERedR AR o e = S BRI
«y ODOOO oy 03X 100 «y O00O0O0O0r «y OO0O0O0O0x (3] 1000 (2] 10C o) - oy OO0
HEHHEHEE) HESHs-H: BHBHEHES rEHman HoE-e e =
BRA9ERY oW ComusanH SENssSH pEonoestn ogomenn o
Esmesce " OO CamuEwg-r Ssssesen gheccoon soEs RS B
o - BEHREH! el == = ===] v, BRI . m © HAHS lmmm o 5
o «y OOO0O0Orxe 3y OO « OOO0O000 oy OOO0O0O00c o« OOO0O00Oo00 o OOO0O000O0) o~ O

B-10

Heboe SRosina ARaEe BEEEE B B, B e
SRR hRRE Eesr Rl D 1 oA S
<EREEAE cORRARn <EAET e oREEH 2 uha o=t

~ [m] ~ D =~ OOO0O0% ~ OO0 O3 EE Wmﬂmﬂl

JEEEEEH BEEERROE RAed SFBRAEARA BFE BEEEER e S
umm@m_mm m memmmnmmm “wm “wmmwmu nu_nﬂbmmmn nﬂunmml 3 :lll.w.ll H :]ﬂm_%mw
(] H H-= (e = Bnanas mm e a - -
oM ST Rt TR (T o e R
COFEOEEE BOOERRRR BROERR B e QIIe AR Ssoass
T el O En o SRR oeel oo
[=] [wim Jeiam mim)] ']| - [(wanas ns OO0 - e m m
gEmsRamnt oOHHA o 2 oEdReEl GHBEHE oHESd offeEet (DR
B e oot e memmer Gl S
o2 HESSr heSE EEOEE Bebss oEEEr Ry e
25 SEESsS cussmEsH offiss=Rt oHNsdNE oofeSaRH oOHSEREH o Efeafer

B-11

Color Font, Graphics Characters

80 88 A0 A8 BO
[[[L[] mn] [T[] am
00800 00800
1800 CeO0onedn
ssssani i Hediend
0000 1800 [OE0000m00 00 000 OomOooetd
800 0S0000E00 SEEEEEESE EE00 TIEE
oL | A0 B}
MAAANA ERAmARAH HH
8 89 91 99 Al 9 B1 0-1 B9 wu-o
0] IDD:D DEDDI[IIED 0000Ce0 lII=lll_I!! ll_l!!r!rll_lr lIIlII=llll [| sjud]
a HHAHH HHHHR Herardn HHa HHHeAH B
O 0 0000s0 omoOostOs0 0se2e000od O0w 000as0000 0000w00a0
0 U [[juaE Dllg:lilll]]===ED[I n lII=I ED%:E 000 DED%IE_ [)
sed femaed HHeAOHd HBHHHHH SR Sdisiviss
0000oe0000 00000000 OJuEEEEEE BEBEREEEE (0O 000000000
0 000000 000000000 000000000 2 O000O 00000000d
82 8A 92 eft mil 9A A2 AA B2 o.x BA ux
JOO000800 wSESEESEE (O 0000 =Es000000
000080E0 00 [on] 0000 000800000
;]Elil 1000 ED:I JlilLlJU DEDDIEIE%
HH-assss ssssnssss O-smasass 0RO HHE: saa snusllsess e
DOsI00000 0o pDuoeno [nEE] N
[LTI]nim OJm: [Tl [1]
AIAO000 HEI.[R o
[BRRERANI L1 [BEE B [BBABI
83 8B 93 right tail AB B3 .U BB U-1
00o 3=Dﬂ% EIEDDI :DD ! jOum EEm llll:g
0 :5 HIE BEHB= o0 H:l |IHB LHEE B HE (]
==,%luc.1m gJoosooon Uooouoon]] 1800 agm CI0)
OONENES GIRGEEESS EESEEENT] e IEDD ORI
L] LI} L)
00DOeJ000 SEEEEEEER 1800
O0000semd0 000000000 1800
84 8C 94 9C A4 AC 141
000000 OmO00 OONEEEENS UEEEEEEER
Oomooon00 OWO00oiu0d 008000
Uma:gg; [} %EEI LI %:1
B SeassorH Wessmsgss oiEsn e
000080000 0ao! 0 00Jomes0d] OmOoeJosd OOm g
OooEo00 0o N DEDFH%E; IID;]"!HH=E lIl=' (T JL]L]
Z:BIEE:E BE [assasa a] lIlIIIlE l| B
85 8D 95 9D AS AD 10 BS Xx-0 BD 1.0 slow
0ooosoood 0ooos N000000 ll=§)00 !H""FD ll!_llDEl [rH : !lﬂm
% ggldHilt 00 -Hﬁ (] :ﬂﬂg oo ;ﬂla 000
OORIe000 180] O000e00 [[[0000800
i as e e Cohei0 o] AR
H Seaa] s e 00 fases - aman o] | |
10 00l u |u] 18010 000000 100000 000
00 om0 1800 100000 100000 000
9E A6 AE 1x B6 xa BE 0-1 slow
OEO0000s0 00 0000 0OO0DDESEs []
Ooosesco] OOW; JOE00O00 0000e0000 (58
JEID%BDD ﬁll i; 0Os1000 0ODUe 0 O I0Ce000
%-99-_“ H H ay o AERHH
Ll OO0 008 aos!
o PH e a
L 1L EH&SEEIHH POt
9F A7 AF 11U B7 x.u BF
ﬁgﬁllﬂ:; IFD !5=lll] wn! ==I=ll===
llw 0 ||ﬂﬁ :=]i' 060 X llllillll
[agas] w 800 COODEI000 mEsL SENEENEES
8 {1]]] N I=:lﬁ l%= U 00000000 ll=llll==
HPaasa] Hoo0o0ed fan HHfasss Baasasass
0000000 L L]]] W] 000 100000 seasssess
100000 000000000 000 000 seesesEns

C2
[[[]]]][un]
in/n] uN|

dHssra

LGl

c3
e (1117 1]

CoOoUo00D
i o
SEEesansE
= o
s sininla wlm st

= =
G

ma S EEEEmmmEE =

BHRHEEERES

EGD o SasnesEss S
Fssasssas

==

8]]
000e00 O

I
L)

i

B85

=3

LU

" M 00
ONCESOTD O

§ na]
ol [T T 1T}
000000000

[m]_|m mmy
ERCLE:

==
=
E

EO0 F8
1 u L[[[[]m
0000 OOSSERE]
00000000 OO0eRE0
Hard-HadH Rasasaes
OEeg00R00
s 0| II%E
E1 F9
i i
Hael HH Enes
00000 Dues T1T] SEEERO0]
P R
osoEen OoOoon H Al
00R0000 | [| 00ac
FA
nan | |
] |]
e
i saasl |||
800 W]
B0 8] |
4l oa 55
[lnn's vl
E3 FB
;;ﬁ]:umu oes
Neuelal AH HHHEN
suna suusl 0 OOOONEOO
WA [[]] 0 é ii“;;:
[
0000
E4 FC
OO0 0 Ee0O0L
llI:l:; L[] nl [wn]
|] W i | a8 (1]
L . ?ISE’EE.]
Lttt b llﬁi
w1
A
ES FD
ooooegoog sunREENen
EB E [SsEEEEuEs
wunn 0 sEssEEsEs
osons ENEEED
T
aaes maas
[wajua] aua] 8 1T
000000 sEEsEEess
Eé6 FE
oo 0 EEEEREEEN
0800 SESEEEEEN
fooomg SENREEENE

]
0 SEEREREsn

OO0

OO0

BHEEEEEES

0 NEsEEEN
] sEEEEEEEN
00 ESEsEsEED

FF
L (LT

B-13

Appendix C
Operator's Keypad Mapping
to TL/1 Input

Input from the following keys is available in either buffered or
unbuffered mode.

ASCII ASCII

Key CHR HEX Key CHR HEX
EXEC (G) G 47 ROM (S) s 53
PROBE (H) H 48 STIM (T) T 54
BUS (I) I 49 4 4 34
READ (J) J 4A 5 5 35
Cc o 43 6 6 36
D D 44 7 7 37
E E 45 OPTION (U) U 55
F F 46 (V) v 56
MAIN MENU (K) K 4B SYNC (W) W 57
GFI (L) L 4C (X) X 58
I/0 MOD (M) M 4D RUN UUT (Y) Y 59
RAM (N) N 4E 0 0 30
WRITE (O) o) 4F 1 1 31
8 8 38 2 2 32
9 9 39 3 3 33
A A 41 EDIT (.) . 2E
B B 42 REPEAT (_) _ 5F
SETUP MENU (P) P 50 LOOP (2) z 5
SEQ (Q) o) 51 CONT (SPACE) SP 20
POD (R) R 52

Input from the following keys is only available in unbuffered mode.

Key

ENTER/YES
CLEAR/NO
LEFT ARROW
UP ARROW
RIGHT ARROW
DOWN ARROW
HELP

ALPHA

C-2

ASCII
CHR HEX
CR 0D
RUB TF
A4
Al
A3
A2
92
ESC 1B

ASCIT
Key CHR HEX
SOFT KEYS 94
F1 81
F2 82
F3 83
F4 85
F5 86
EXT SW (input) CR 0D

‘ | Appendix D
Programmer's Keyboard

Mapping to TL/1 Input

The hexadecimal character codes less thdn or equal to 7F are the
standard ASCII codes as defined in Appendix A, "ASCII
Codes." The chart on the next page shows the mapping of the
programmer's keyboard to non-standard character codes. Input
from these keys is only available in unbuffered mode. "Shifted"
indicates that the Shift key is pressed.

D-1

D-2

Key

Fl

F2

F3

F4

F5

Fé6

F7

F8

F9

F10

Edit

Quit

Msgs

Help

Info

Begin File
End File
Scroll Forward
Scroll Backward
Begin Line
End Line
Left Arrow
Down Arrow
Right Arrow
Up Arrow
Field Select
Break

HEX

81
82
83
85
85
87
88
8A
8B
8C
8D
8F
91
92
94
95
97
99
9B
9D
S9F
A4
A2
A3
Al
FO
F3

Shifted
HEX

Bl
B2
B3
BS5
B6
B7
B8
BA
BB
BC
BD
BF
Cl
c2
Cc4
C5
c7
Cc9
CB
CD
CF
D4
D2
D3
D1
Fl
F3

Appendix E
/0 Module Clip/Pin

Mapping

Clip size = 14, module installed on "A" side

Clip I/0O Mod Pin Clip I/O Mod Pin
1 = 1 14 = 20
2 = 2 13 = 19
3 = 3 12 = 18
4 = 4 11 = 17
5 = 5 10 = 16
6 = 6 9 = 15
7 = 7 8 = 14

‘ Clip size = 14, module installed on "B" side

Clip I/0O Mod Pin Clip I/0O Mod Pin
1 = 21 14 = 40
2 = 22 13 = 39
3 = 23 12 = 38
4 = 24 11 = 37
5 25 10 = 36
6 26 9 = 35
7 27 8 = 34

E-1

Clip size = 16, module installed on "A" side ‘

Clip I/0 Mod Pin Clip I/O Mod Pin
1 = 1 16 = 20
2 = 2 15 = 19
3 = 3 14 = 18
4 = 4 13 = 17
5 = 5 12 = 16
6 = 6 11 = 15
7 = 7 10 = 14
8 = 8 9 = 13

Clip size = 16, module installed on "B" side

Clip I/O Mod Pin Clip I/0 Mod Pin
1 = 21 16 = 40
2 = 22 15 = 39
3 = 23 14 = 38
4 = 24 13 = 37
5 = 25 12 = 36
6 = 26 11 = 35 ‘
7 = 27 10 = 34
8 = 28 9 = 33

. Clip size = 18, module installed on "A" side

Clip I/O Mod Pin Clip I/O Mod Pin
1 = 1 18 = 20
2 = 2 17 = 19
3 = 3 16 = 18
4 = 4 15 = 17
5 = 5 14 = 16
6 = 6 13 = 15
7 = 7 12 = 14
8 = 8 11 = 13
9 = 9 10 = 12

Clip size = 18, module installed on "B"™ side

Clip 1I/O Mod Pin Clip I/0O Mod Pin
1 21 18 = 40
2 = 22 17 = 39
3 = 23 16 = 38
4 = 24 15 = 37
‘ 5 = 25 14 = 36
6 = 26 13 = 35
7 = 27 12 = 34
8 = 28 11 = 33
9 29 10 = 32

E-4

Clip size = 20, module installed on "A" side

Clip I/O Mod Pin

[

Clip

Clip

[

cwoNand WP

CwoNoanes W

size = 20, module installed on "B side

i

oCwoNaud WP

[

I/O Mod Pin

21
22
23
24
25
26
27
28
29
30

Clip I/O Mod Pin

20
19
18
17
16
15
14
13
12
11

Clip I/O Mod Pin

20
19
18
17
16
15
14
13
12
11

20
19
18
17
16
15
14
13
12
11

40
39
38
37
36
35
34
33
32
31

‘ Clip size = 24, module installed on "A" side

Clip I/0 Mod Pin Clip I/0 Mod Pin
1 = 1 24 = 20
2 = 2 23 = 19
3 = 3 22 = 18
4 = 4 21 = 17
5 = 5 20 = 16
6 = 6 19 = 15
7 = 7 18 = 14
8 = 8 17 = 13
9 = 9 16 = 12

10 = 10 15 = 11
11 = 29 14 = 32
12 = 30 13 = 31

Clip size = 24, module installed on "B" side

Clip I/0 Mod Pin Clip I/0 Mod Pin

1 = 21 24 = 40
‘ 2 = 22 23 = 39
3 = 23 22 = 38

4 = 24 21 = 37

5 = 25 20 = 36

6 = 26 19 = 35

7 = 27 18 = 34

8 = 28 17 = 33

9 = 29 16 = 32
10 = 30 15 = 31
11 = 9 14 = 12
12 = 10 13 = 11

Clip size = 28 '

Clip I/0O Mod Pin Clip I/O Mod Pin
1 = 1 28 = 40
2 = 2 27 = 39
3 = 3 26 = 38
4 = 4 25 = 37
5 = 5 24 = 36
6 = 6 23 = 35
7 = 7 22 = 34
8 = 8 21 = 33
9 = 9 20 = 32

10 = 10 19 = 31
11 = 11 18 = 30
12 = 12 17 = 29
13 = 13 16 = 28
14 = 14 15 = 27

Clip size = 40

Clip I/0 Mod Pin Clip I/O Mod Pin '
1 1 40 = 40
2 = 2 39 = 39
3 = 3 38 = 38
4 = 4 37 = 37
5 = 5 36 = 36
6 = 6 35 = 35
7 = 7 34 = 34
8 = 8 33 = 33
9 = 9 32 = 32

10 = 10 31 = 31
11 = 11 30 = 30
12 = 12 29 = 29
13 = 13 28 = 28
14 = 14 27 = 21
15 = 15 26 = 26
16 = 16 25 = 25
17 = 17 24 = 24
18 = 18 23 = 23
19 = 19 22 = 22

20 = 20 21 = 21

Appendix F

TL/1 Reserved Words

abort
and
array
bitmask
cpl
declare
else
elseif
end
endif
execute
exercise
exit
fails
fault
floating
for
function
global
goto
handle
if

input
len
local
loop ..

1sb

msb
next
not
numeric
on

or
passes
persistent
print
program
refault
return
setbit
shl

shr
step
string
test
then
times
to
until
using
while
Xor

F-1

Appendix G
Handling Built-in Fault

Conditions

OVERVIEW G.1.

This appendix lists the arguments that are provided with TL/1's
built-in tests. These arguments can be used in your fault
condition handlers (the handle command) and fault condition
exercisers (the exercise command).

A TL/1 fault-condition handling procedure for the
ram_addr fault fault condition might look like this, for example:

handle ram _addr_ fault (mask, access_attempted,
addr, data_mask)
declare
string mask
string access_attempted
numeric addr
numeric data_mask
end declare
! <insert your code here>
end ram addr fault

The TL/1 applications interface always provides a fault condition
handler for each fault test listed here. In the absence of a handler
written by you, TL/1's default handler simply displays the name
of the fault condition encountered on the operator's display.

G-1

When you provide a handler for a given test, TL/1 will use your
handler and the fault message will not be displayed.

The process of calling a fault condition handler is exactly like
calling a function. The arguments are essential even to handlers
designed to ignore the first several occurrences of a fault
condition; for example, if your handler is to ignore the first five
occurrences but act on the sixth, all of the relevant arguments
must be in place so that they can be used on the sixth

occurrence.

ARGUMENT NAMES

mask, mask_tied, mask low,
mask high, mask_ stat,
mask_ctrl, mask _misc,
mask addr, mask data
(string)

access_attempted (string)

addr (numeric)

upto (numeric)

ctl (numeric)

verified (string)

G-2

G.2.

A 64-character string of faulted
bits, where (= not faulted, and
1 = faulted. The rightmost bit is
the least significant.

UUT access when a fault
condition occurred, e.g.
"READII’ "WRITE".

Address at which a fault
condition occurred (as first
detected by the test phase of the
test/diagnostic built-in) or the
low address of an address
range.

High address in an address
range.

Value written to control lines of
the UUT.

Parameter indicating that a fault
condition has been verified (not
intermittent), where verified
= "confirmed"” or "not
confirmed."

addr_expected (numeric)
data_expected (numeric)
code (numeric)

index (numeric)

data (numeric)

sig (numeric)

sig expected (numeric)

iomod nums (numeric)

data_mask (numeric)

addrstep (numeric)

no_pins (numeric)

Address expected during a test.
Data expected during a test.
Pod self-test error code.

Index into a table of pod
specific error messages.

Data read from or written to the
UUT.

Faulty signature read in a ROM
test.

Signature expected in a ROM
test.

A bit mask for the faulty
I/O module number (the least-
significant bit is I/O module 1).

Example: If iomod_nums is 3, it
refers to both I/O module 1 and
1/O module 2.

Mask of testable data bits,
where 0 = not testable bit,
1 = testable bit.

Address increment.

If this argument is present, pin
numbers are not to appear in
message text on the display
(only signal names are
displayed). If the no-pins
argument is absent, both pin
numbers and signal names will
appear in fault messages on the
display.

G-3

message, messagel, message2 - Additional information added
(string) to a fault. Messagel becomes

the first line, and message2

becomes the second line of the

display.
err num(numeric) Arguments describing an error
err msg(string) raised under special con-

itions as a fault (e.g. the
io_error fault)

RAM TEST FAULT CONDITIONS G.3.
Fault Condition Name Arguments
ram_addr_ addr tied mask

(address bus tied)
access_attempted
addr
data_mask
no_pins
verified

ram _addr data tied mask

(data bits tied to an
address line)

mask tied
(address bit tied to
data bits)

access_attempted

addr

data

data_expected

data_mask

no_pins

ram_addr data_tied unconfirmed
mask
(data bus tied to an
address line)
mask_tied
(address bit tied to
data bits)
access_attempted

Fault Condition Name

ram_addr fault

ram _cell cell tied

ram_cell high tied

ram cell low tied

ram data_data_tied

Arguments

data
data_expected
data_mask
no_pins

mask
{address bits faulted)
access_attempted
addr
data_mask
no_pins

mask

(data bits tied)
access_attempted
addr
data
data_expected
data mask
no_pins
verified

mask
(data bits tied high)
access_attempted
addr
data
data_expected
data_mask
no_pins

mask

(data bits tied low)
access attempted
addr
data
data_expected
data_mask
no_pins

mask
(data bits tied
together)
access_attempted
addr

G-5

Fault Condition Name

ram data_fault

ram data_high tied

ram_data_incorrect

ram data_low_tied

ram_data retention_fault

Arguments

data_expected
data_mask
no_pins
verified

access attempted

addr
(address of cell unable
to modify)

data

mask
(data bits tied high)
access_attempted
addr
data
data_expected
data_mask
no_pins

data_expected
data
access_attempted
addr
(address where
read/write error
occurred)

mask
(data bits tied low)
access_attempted
addr
data
data_expected
data mask
no_pins

access attempted
addr
data_expected
data

‘ ROM TEST FAULT CONDITIONS

Fault Condition Name

rom_addr_addr_ tied

rom_addr fault

rom data_data_tied

rom data fault

rom data_high tied all

Arguments

addr
upto
mask
(addr bits
together)
addrstep
data_mask
no_pins

addr
upto
mask

(addr- bits
addrstep
data_mask
no_pins

addr
upto
mask
(data bits
together)
addrstep
data_mask
no_pins

addr

upto

mask low
(data bits

mask_high
(data bits

addrstep

data_mask

no_pins

addr

upto
addrstep
data_mask
no_pins

G.4.

tied

stuck)

tied

tied low)

tied high)

G-7

Fault Condition Name Arguments

rom_data low_tied all addr
upto
addrstep
data_mask
no_pins

rom sig incorrect sig
sig_expected
addr
upto

BUS TEST FAULT CONDITIONS G.5.

Fault Condition Name Arguments

bus_addr high tied mask
(address bits tied
high)
addr

bus addr low tied mask
(address bits tied low)
addr

bus_addr_tied mask
(address bits tied
together)
addr

bus_data high tied mask
(data bits tied high)

addr

data

bus data_low_tied mask
(data bits tied low)

addr

data

G8

Fault Condition Name

bus_data_tied

Arguments

mask
(data bits tied
together)

addr

data

MEMORY INTERFACE POD FAULT

CONDITIONS

Fault Condition Name

m_bus_kernel

m_bus_addr_high

m _bus_ addr_low

m_pod buscycle clock

m _pod_roml cs

m_pod slow clock

m_pod stopped

m_pod_no_reset

m_pod reset_addr

m _pod reset_data

Arguments

messagel
message?2

mask
mask

mask_stat
mask ctrl
mask_misc

messagel
message?2

mask

messagel
message?2

mask
messagel
message?2

addr expected
mask_high
mask_low

data_expected
mask_high
mask low

G.6.

G9

GENERIC FAULT CONDITIONS

Fault Condition Name

generic fault

Arguments

message
mask_stat
mask_ctrl
mask addr
mask_data
mask_misc

PRIMITIVE FAULT CONDITIONS G.8.

G-10

Fault Condition Name
clkmod_ fuse_blown

iomod_dce

~iomod_fuse_blown

iomod current_fault

pod_addr_tied

pod_breakpoint

pod ctl tied

pod_data_incorrect

pod_data_tied

pod_forcing active

pod_interrupt_active

Arguments

<none>

iomod_nums

iomod_nums

<none>

mask
(address bits tied
together)

<none>

mask
(control lines tied)

data
data_expected

mask
(data lines tied)

mask
(forcing lines tied)

mask
(interrupt line active)

Fault Condition Name

pod misc_fault

pod special
pod timeout_bad pwr

pod_timeout_enabled line

pod_timeout_no_clk
pod timeout_ recovered
pod _timeout_setup
pod_uut_power
podselftest failed

probe_fuse blown

/0 FAULT CONDITIONS

Fault Condition Name

io_error

Arguments

mask
(miscellaneous signals
faulted)

index

<none>

mask
(enable line causing
timeout)

<none>

<none>.

<none>

<none>

code

<none>
G.9.

Arguments

err_ num
err msg

ARGUMENTS USED WITH BUILT-IN TESTS

G-12

G.10.

The following built-in tests raise the primitive fault conditions
(listed in the previous section). In addition to the arguments
required as indicated by each primitive fault condition, each
built-in test adds the arguments listed in the following table:

Built-in Test

rampaddr

rampdata

read

readblock

readstatus

rotate

toggleaddr

togglecontrol

toggledata

write

Arguments

access_attempted
addr

access_attempted
addr
data

access_ attempted
addr

access_attempted
addr

(Does not raise fault

conditions)

access attempted
addr
data

access_attempted
addr

access_attempted
ctl

access_attempted
data
addr

access_attempted
data
addr

Built-in Test

writeblock

writecontrol

writefill

Arguments

access_attempted
data

addr
access_attempted
ctl

access_attempted
data
addr

Appendix H
Generating Built-in
Fault Messages

OVERVIEW H.1.

This appendix relates the text of TL/1 fault messages to the arguments
used in the TL/1 fault command. With this information, you can
produce the same fault messages as those produced by the TL/1 default
handler.

Fault messages are one or two lines long, and each line can have up to
three variations, depending on the absence or presence of particular
arguments in the handler. For example, the pod_forcing active fault
condition can produce these different messages:

1. forcing signal <name> <pin> is active

2. forcing signal <name> <pin> is active
attempted to <action> at <address>

3. forcing signal <name> <pin> is active
attempted to <action> control <control>

H-1

Message 1 would be displayed if the following statement appeared in the
program:

fault pod forcing active mask mask

Message 2 would be displayed if the following statement appeared in the
program:

fault pod forcing active mask mask, access_attempted
"read", addr $8000

Finally, message 3 would be displayed if the following statement
appeared in the program:

fault pod_forcing active mask mask, access_attempted

"read”, ctl %62

For the statements above, 62 is the argument value used for the
argument named ctl, "read" is the argument value used for the argument
named access_attempted, 8000 is the argument value used for the
argument named addr, and mask is the variable name used to provide
the argument value for the argument named mask.

Symbols H.1.1.
The following symbols and names are used in the tables that follow:

The argument is a string.

The argument is numeric.

The argument is included in the handler.

The message is always used for this fault condition.
The first alternative for the fault message.

The second alternative for the fault message.

The third alternative for the fault message.

The fourth alternative for the fault message.

The fifth alternative for the fault message.

b WNEFE M 30

H-2

Message Variables

<action>

<name>

<pin>

<data>

<pod-special message>
<number>

<address>

<control>

Argument Names

mask, mask_tied, mask low,

mask_high (string),
mask-stat, mask-ctrl,
mask-data, mask-addr,
mask-misc

access_attempted (string)

addr (numeric)

upto (numeric)

ctl (numeric)

H.1.2.

One of the following actions:
write
read
A signal name.
A pin number or alphanumeric designation.
A hexadecimal data value.
A pod-dependent fault message.
A decimal number.
A UUT address.

A control word.

H.1.3.

A 64-character string of faulted
bits, where 0 = not faulted, and
1 = faulted.

UUT access when a fault
condition occurred, (e.g. "read"”
or "write").

- Address at which a fault
condition occurred or the low
address of an address range.

- High address in an address
range.

- Value written to control lines of
the UUT.

H-3

message, messagel,
message?2 (string)

verified (string)

addr_expected (numeric)
data_expected (numeric)
code (numeric)

index (numeric)

data (numeric)

sig (numeric)

sig _expected (numeric)

test_type (string)

iomod_nums (numeric)

data_mask (numeric)

addrstep (numeric)

no_pins (numeric)

H-4

Message written to the display.

Parameter indicating that a fault
condition has been verified,
where verified = "confirmed" or
"not confirmed."

Address expected during a test.
Data expected during a test.
Pod self-test error code.

Index into a table of pod special
€ITor messages.

Data read from or written to the
UUT.

Faulty signature read in a ROM
test.

Signature expected in a ROM
test.

The type of test being executed.

A bit mask for the faulty
I/O module number (the least-
significant bit is I/O module 1).

Example: If iomod_nums is 3, it
refers to both I/O module 1 and
1/O module 2.

Mask of valid data bits, where
0 =invalid bit, 1 = valid bit.

Address increment.
Pin numbers are not to appear in

message text, where (0 = pins,
1 = no pins.)

err_num(numeric) - Arguments describing an

err_msg(string) error raised under special
conditions as a fault (e.g. the
io_error fault).

HOW TO READ THE FAULT-MESSAGE TABLES H.2.

In the tables that follow, the fault conditions are organized alpha-
betically, the Type column shows whether the arguments for that fault
condition are string or numeric variables. Columns I/, 2, 3,4 or 5
contain an x if the related argument is needed to produce the fault
message associated with that column.

For example, in the bus addr tied fault condition (next page), the
arguments mask, access_attempted, and addr are needed in the fault
condition handler if you want MESSAGE 2 to be displayed. If you
prefer MESSAGE 3, use the mask, access_attempted, addr, and data
arguments. To get MESSAGE 1, include the mask argument in your
handler.

'FAULT MESSAGE TABLES

H.3.

Fault Condition and Type Fault Message
Arguments Alternatives

bus_addr_high_tied

| I | I |
mask | s | x | x | |
access_attempted | s I I x| !
addr | n ! x| I
MESSAGE 1: addr line <name> <pin> stuck high
MESSAGE 2: attempted to <action> at <address>
bus_addr_low_tied I I [l I
mask | s I x | x | |
access_attempted | s [I x| I
addr | n | | x | I
MESSAGE 1: addr line <name> <pin> stuck low
MESSAGE 2: attempted to <action> at <address>
bus_addr_tied I I I I I
mask | s Il x| x| x |
access_attempted | s | | x | x |
addr | n I Fx | x|
data | n | ! x|
MESSAGE 1: addr line <name> <pin> tied
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at

<address>

H-6

Fault Condition and Type Fault Message
Arguments Alternatives

bus_data_high_tied [I [|
mask I s | x | !

MESSAGE 1: data line <name> <pin> stuck high

bus_data_low_tied [| I [
mask | s x| x|

MESSAGE 1: data line <name> <pin> stuck low

bus_data_tied I | [[

mask | s x| I
MESSAGE 1: data line <name> <pin> tied
clkmod_fuse_blown [x| [

MESSAGE 1: clock module fuse blown

Fault Condition and Type Fault Message
Arguments Alternatives
11213

generic_fault
message

mask_ stat
mask_ctrl

mask_ addr
mask_data

mask _misc

wonoono
MWW oMM XNN

MESSAGE 1: <message>
status line <name> <pin>
control line <name> <pin>
address line <name> <pin>
data line <name> <pin>
line <name> <pin>

io_error | |] |

err_num | n I x| [
err msg I s I x| I
MESSAGE 1: I/0 error <err num>: <err_msg>
iomod_current_fault I I * |
MESSAGE 1: I/0 module overcurrent fault

H-8

Fault Condition and Type Fault Message
Arguments Alternatives

iomod_dce
iomod nums

| f I | I f
| | n | x | I ! |
access_attempted | s I I x| | I
addr | n ! I x| | I
MESSAGE 1: compare condition reached in I/0 module
<number>
MESSAGE 2: attempted to <action> at <address>
iomod_fuse_blown I | [! | [
iomod_nums | n I x| ! I !
MESSAGE 1: I/0 module <number> fuse blown
m_bus_addr_high I | I I I I
mask | s | x | I ! |
MESSAGE 1: addr line <name> <pin> was high - expected
low
m_bus_addr_low I I I I [I
mask | s | x | I | |
MESSAGE 1: addr line <name> <pin> was low - expected

high

H-9

Fault Condition and Type Fault Message
Arguments Alternatives

m_bus_kernel | | | | | |

messagel I s x| { { [
message2 | s | x| | I I
MESSAGE 1: kernel fault

<messagel>

<message2>

m_pod buscycle_clock

[I | | I I
mask_stat | s b x| | ! |
mask_ctrl | s x| I I |
mask_misc | s I x| | | |

MESSAGE 1: pod buscycle CLK BAD
check status line <name> <pin>
check control line <name> <pin>
check line <name> <pin>

m_pod_no_reset
mask

I I I ! | I
| s I x | I ! !
messagel | s I x | | ! |
message2 | s | x | | | |
MESSAGE 1: no UP reset detected on <name> <pin>
<messagel>
<message2>

H-10

Fault Condition and Type Fault Message
Arguments Alternatives

11 2| I !
m_pod reset_addr
addr_expected n

mask_high
mask low

MESSAGE 1:

m_pod_reset_data
data_expected

mask_high
mask_low

MESSAGE 1:

BAD reset address:

S
3

<name> <pin> was high
<name> <pin> was low

BAD reset data:

|
n |
s !
s }

<data>

<name> <pin> was high
<name> <pin> was low

m_pod_roml_cs |

messagel
message2

MESSAGE 1:

ROM1 CS or OE is

<messagel>
<message2>

| [
| !
I |
I !

L]

L

expected

<address> expected

Fault Condition and Type Fault Message
Arguments Alternatives

m_pod_slow_clock | | I I I [
mask | s I x| | I l

MESSAGE 1: UTT clock <name> <pin> slow or stuck

m_pod_stopped ! [] I I I

messagel | s | x | | I I
message2 I s | x | ! ! |
MESSAGE 1: microprocessor stopped or bad
<messagel>
<message2>
pod_addr_tied I [[[| |
mask | s I x | x| x| |
access_attempted | s I l x| x | |
addr | n | bx | x| !
data | n | I | x | I
MESSAGE 1: addr line <name> <pin> not drivable
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at
<address>
pod_breakpoint ! I * | I | |
access_attempted |- | | x | | |
addr | n | I x | [|
MESSAGE 1: breakpoint reached
MESSAGE 2: attempted to <action> at <address> '

H-12

Fault Condition and Type Fault Message
Arguments Alternatives

pod_ctl_tied
mask

! I I | | |

(- l x| x| x| x|
access_attempted - | x| x| x|
ctl | n I ! I I x|
addr | n | Il x| x| x |
data | n I I I x| I
MESSAGE 1: control line <name> <pin> not drivable
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at

<address>

MESSAGE 4: attempted to <action> control <control>
pod_data_incorrect I I I [[|
data | n I x | I | |
data_expected | n I x | I I [
access_attempted | s I | x | | !
addr | n I x| ! I
MESSAGE 1: read incorrect data <data> expected <data>
MESSAGE 2: attempted to <action> at <address>
pod_data_tied I I I I I [
mask | s x| x| x| I
access_attempted | s | I x| = | |
addr | n [I x | = | [
data | n | I I x| I
MESSAGE 1: data line <name> <pin> not drivable
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at

<address>

H-13

Fault Condition and
Arguments

Type Fault Message
Alternatives

pod_forcing_active

mask

access_attempted

ctl
addr

MESSAGE 1:
MESSAGE 2:
MESSAGE 3:

[| | | l |
| s I x| x| x| I
| s ! | x | x | [
| n I | I x | |
i n I I x| | I

forcing signal <name> <pin> is active

attempted to
attempted to

pod_intexrrupt_active

mask

access_attempted

ctl
addr

MESSAGE 1:
MESSAGE 2:
MESSAGE 3:

<action> at <address>
<action> control <control>

| | | | I |
| s Il x | x| x | |
| s | | x | x | !
| n | I x| I
| n I x| | I

interrupt <name> <pin> is active

attempted to
attempted to

pod_misc_fault

mask

access_attempted

ctl
data
addr

MESSAGE
MESSAGE

MESSAGE
MESSAGE
MESSAGE

(N

16, - V3]

<name> fault
attempted to
<address>
attempted to
attempted to
attempted to

<action> at <address>
<action> control <control>

| I ! | I |
| s l x| x| x| x| x
| s | x| x| x| x
| n ! ! I I x |
[n | | x | i |
| n | | x | ! | x
<pin>

<action> data <data> at

<action>
<action> control <control>

<action> at <address> ‘

Fault Condition and Type Fault Message
Arguments Alternatives

pod_special

] I I I I
index | n x| | |
access_attempted - I x| I
addr | n | I x| I
MESSAGE 1: <pod-special message>
MESSAGE 2: attempted to <action> at <address>
pod_timeout_bad_pwr I I* ! l
MESSAGE 1: pod timeout bad UUT power supply
pod_timeout_enabled_line | | | I |
mask I s I x | ! |
MESSAGE 1: enabled line <name> <pin> causes

timeout
pod_timeout_no_clk | Foxl |
MESSAGE 1: pod timeout bad UUT clock

H-15

Fault Condition and Type Fault Message

Arguments

Alternatives

pod_timeout_recovered

| I f | I
access_attempted | s [l x| x| x
ctl | n I ! I | x
addr | n I ! I = |
MESSAGE 1: pod timeout recovered
MESSAGE 2: attempted to <action>
MESSAGE 3: attempted to <action> at <address>
MESSAGE 4: attempted to <action> <control>
pod_timeout_setup I x| | |
MESSAGE 1: setup causes pod timeout
MESSAGE 1: bad UUT power supply

podselftest_failed I I I ! I

code | n | = | | I
MESSAGE 1: pod selftest code = <number>
probe_fuse_blown ! > |
MESSAGE 1: probe fuse blown

Fault Condition and Type Fault Message
Arguments Alternatives
11210 31 I
ram_addr_addr_tied [[I [| [
verified | s I x | x| I I
mask | s Il x | x| x| !
no_pins | n ! I x | I I
access_attempted | s | I I x| I
addr | n I I | = | I
MESSAGE 1: addr line <name> <pin> tied to addr
line <name> <pin>
MESSAGE 2: addr line <name> may be tied to addr line
<name>
MESSAGE 3: attempted to <action> at <address>

ram_addr_data_tied

mask
mask_tied
no_pins

access_attempted

addr
data_expected
data

MESSAGE 1:
MESSAGE 2:

S uBbwon

]

I
|
!
I
i
I
|
I

L

HoX WM

addr line <name> tied to data line <name>

attempted to <action> data <data> at
<address> read <data>

H-17

Fault Condition and Type Fault Message .
Arguments Alternatives

ram_addr_data_tied_unconfirmed

mask | s x| x| I |
mask_tied | s I = | x | | |
no_pins | n I x| [| !
access_attempted | s [I = | | I
addr | n ! I x | I |
data expected | n | I x | | !
data | n | I x| ! I
MESSAGE 1: addr line <name> may be tied to data line
<name>
MESSAGE 2: attempted to <action> data <data> at
<address> read <data>
ram_addr_fault I I I [I I
mask | s | x | x | | I
no_pins | n I x| [I I
access_attempted | s I I x | | !
addr | n I I x| I |
MESSAGE 1: addr line <name> stuck or open
MESSAGE 2: attempted to <action> at <address>

H-18

Fault Condition and Type Fault Message
Arguments Alternatives
| I 21 3| |

ram cell_cell_tied I | I I ! I
verified | s { I x | | |
mask | s | I x | x | f
no_pins Il n | I x | | |
access_attempted | s | I I x | I
addr | n | I | x | I
data_expected | n I | I x | I
data | n I | I x| !
MESSAGE 1: memory cell for <name> coupled to memory

cell for <name>
MESSAGE 2: memory cell for <name> may be coupled to

memory cell for <name>
MESSAGE 3: attempted to <action> data <data> at

<address> read <data>
ram_cell _high_tied I ! | ! I I
mask | s | I x | [|
no_pins | n l | I | l
access_attempted | s I I x | | I
addr | n I I x | I I
data_expected [n I I x | ! !
data | n [I ! I
MESSAGE 1: memory cell for <name> stuck high
MESSAGE 2: attempted to <action> data <data> at

<address> read <data>

Fault Condition and Type Fault Message ‘
Arguments Alternatives

ram cell_low_tied

| | |]] |

mask | s I x | x | | I
no_pins | n | x | I | |
access_attempted | s I I x| I I
addr | n | I x | I !
data_expected | n I I x| I I
data | n [I x | I I
MESSAGE 1: memory cell for <name> stuck low
MESSAGE 2: attempted to <action> data <data> at

<address> read <data>
ram data_data_tied I I I [! I
verified | s [[> |
mask | s | x| x| x| x |
no_pins | n [x| x| |
access_attempted | s | I I | x |
addr | n | I | I x|
data_expected | n I | | I x|
data I n | I I I x|
MESSAGE 1: data line <name> <pin> tied to data

line <name> pod <pin>
MESSAGE 2: data line <name> tied to data line <name>
MESSAGE 3: data line <name> may be tied to data line

<name>
MESSAGE 4: attempted to <action> data <data> at

<address> read <data>

H-20

Fault Condition and Type Fault Message
Arguments Alternatives

ram data_fault

I | I | I I
access_attempted | s I | x| I l
addr | n I I x | | |
data | n I I x | I I
MESSAGE 1: cannot modify RAM data
MESSAGE 2: attempted to <action> at <address> read

<data>
ram_data_high_tied I | I I I |
mask | s x| x| x| I
no_pins | n I I x| I I
access_attempted | s I | I x | |
addr | n ! I I = | l
data_expected | n | [I = | I
data I n | I I x | |
MESSAGE 1: data line <name> <pin> stuck high
MESSAGE 2: data line <name> stuck high
MESSAGE 3: attempted to <action> data <data> at
<address> read <data>

ram_data_incorrect I I I I I I
data I n Il x | I | |
data_expected I n | x | | I I
access_attempted | s | | x | | !
addr | n | I x | I f
MESSAGE 1: read incorrect data <data> expected <data>
MESSAGE 2: attempted to <action> at <address>

H-21

Fault Condition and Type Fault Message
Arguments Alternatives
11121 3

ram data_low_tied

mask
no pins

addr
data_expected
data

MESSAGE 1:
MESSAGE 2:
MESSAGE 3:

ram_data_retention_fault
access_attempted

addr
data_expected
data

MESSAGE 1:
MESSAGE 2:

rom_addr_ addr_tied

mask
no pins
addr
upto

MESSAGE 1:
MESSAGE 2:

H-22

I
|
|
access_attempted |
(
I
I

S8 Bb WD o0
MM XX

data line <name> <pin> stuck low
data line <name> stuck low

attempted to <action> data <data> at

<address> read <data>

! | I !
| I I [
! | I [
I ! i f
I | I |

9B B8 u
MoX XX

RAM data retention fault (bad refresh?)
attempted to <action> data <data> at

<address> read <data>

»

| I I I
| [x | |
| | x | |
[| [[
I I] !

9S8 B
L

addr line <name> tied to addr line <name>
testing from addr <address> to <address>

Fault Condition and Type Fault Message
Arguments Alternatives

| 11 21 31| 4|
rom_addr_fault I | | I | |
mask | s I x | x | ! I
no_pins [n | x | I ! I
addr ! n | I x| | |
upto [n [[x | | I
MESSAGE 1: addr line <name> stuck
MESSAGE 2: testing from addr <address> to <address>

rom_data_data_tied

mask
no_pins
addr
upto

MESSAGE 1:
MESSAGE 2:

rom _data_fault
mask low
mask_high
no_pins

addr

upto

MESSAGE 1:

jo J= I I/]

= Je e IV I 0]

M

I [! ! [
x| i I I
x| I I I
! I | I |
I I I I |

L

I I
! [
I x |
I I
| |
| |

data line <name> stuck low

or data line <name> stuck high

MESSAGE 2:

data line <name> tied to data line <name>
testing from addr <address> to <address>

testing from addr <address> to <address>

H-23

Fault Condition and
Arguments

Type

Fault Message
Alternatives

rom_data_high_tied_all I
addr |
upto i

MESSAGE 1:
MESSAGE 2:

rom_data_low_tied_all I
addr |
upto |

MESSAGE 1:
MESSAGE 2:

rom_sig_incorrect |
sig f
sig_expected !
addr |
upto |

MESSAGE 1:
MESSAGE 2:

unknown_fault |
access_attempted |
addr |
data |
MESSAGE 1:

MESSAGE 2:
<address>

H-24

[aJ ol o o

S
n
n

*

all ROM data bits stuck low
testing from addr <address> to <address>

| |
| x |
I x |
| |
|]

X
X

all ROM data bits stuck high
testing from addr <address> to <address>

X
X

X
X

EE

read incorrect sig <data> expected <data>
testing from addr <address> to <address>

!
!
I
I

unknown or intermittent fault occurred
attempted to <action> data <data> at

(] Appendix |
Pod-Related Information

POD CALIBRATION AND OFFSETS 1.1.

Calibration is the process by which the internal delay lines in the 1/O
module and probe are adjusted to correctly align (in time) the clock and
signals to be sampled. To calibrate an I/O module or probe to a pod for
a particular pod sync mode, you are prompted to probe a signal on the

‘ UUT. The specified reference edge on that signal is found by adjusting
the delay lines in the I/O module or probe relative to the internal
PodSync signal. The appropriate delay, labeled "tcal" in Figure I-1,
may vary from one pod to another and from one sync mode to another.
If calibration is not performed, then a default setting is used for the tcal
value. When calibration is performed, the measured value for tcal
replaces the default value.

Once the reference edge is found, then an offset is applied to that edge to
determine just where in time the I/O module or probe will latch data.

The following is an example for an imaginary "xyz" pod showing how
the offset data is listed in this appendix and how this data would apply
to real waveforms. Pod calibration and offset data for the "xyz" pod
would appear in this appendix as follows:

Sync Mode UUT Signal Edge of Signal Offset from Edge

ADDR ~ALE rising -24 ns

In the imaginary "xyz" pod, the reference edge for address sync is the
rising edge of the ~ALE (address latch enable) signal. Furthermore, the
offset data shows that a valid address is best captured when sampled 24
nanoseconds before the rising edge of ~ALE. (A positive offset would
have indicated that the address should be latched after the reference
edge.)

The waveforms corresponding to the above example are shown in
Figure I-1. The ~ symbol indicates that both the ALE signal and the
PodSync signal are active low.

As aresult of the calibration process, the offset value is set to the default
value for the sync mode in use. If other offsets are required, the TL/1
setoffset command can be used. See the setoffset command and the
getoffset command in the "TL/1 Alphabetical Reference” section of this
manual.

POD INFORMATION FOR 9100A/9105A USERS l.2.

In addition to the pod information in Fluke pod manuals, the
Supplemental Pod Information for 9100A/9105A Users Manual
provides the following additional information for each pod:

® Address space options: Shows the parameter names, para-
meter values, and all legal combinations of parameter values.
Address space options are accessed through the OPTIONS key at
the operator's keypad and display or through the TL/1 getspace
command.

® Pod-specific set-up information: Shows the parameters that
are available through the SETUP MENU key on the operator's
keypad and display or through the TL/1 podsetup command.
These parameters are used to set-up the pod for a specific UUT.

~PodSync

~ALE

24ns &
-» tcal &

Data latched here

Specified reference edge —»;

Figure I-1: Calibration and Offset Example Waveforms

¢ TL/1 support programs: Shows a list of the TL/1 programs
that are available in the pod library. These programs provide
convenient interfacing with any special functions built into the
pod.

d Pod sync calibration and offset data: Shows the UUT
signal, active (reference) edge of the signal, and the default offset
from the specified reference edge for each sync mode.

SUMMARY OF 80186 POD SUPPLEMENTAL
INFORMATION 1.3.

The following information is included as one example of the information
available in The Supplemental Pod Information for 9100A/9105A Users
Manual. This information is particularly helpful for use with the
getspace command, for pod-specific setup information when using pod-
specific TL/1 support programs, and for adjusting pod sync calibration.

Address Space Options:

Parameter

Names: mode space size

Parameter

Values: NORMAL MEMORY WORD
NORMAL MEMORY BYTE
NORMAL I/0 WORD
NORMAL I/0 BYTE
DMA MEMORY WORD
DMA MEMORY BYTE
DMA I/0 WORD
DMA I/0 BYTE

Pod-Specific Setup Information:

POD_CTL - Pod control addresses
STDBY_AD - Standby read address
RESET - Reset

SEG_REG - Segment registers
EXTRA - Extra segment register
STACK - Stack segment register
CODE - Code segment register
DATA - Data segment register

ERR_MASK - Error masks
SUMMARY - Error summary mask
CTRL_DR - Control drivability error mask
ACT FRC - Forcing signal error mask
ACT INT - Active interrupt signal mask
SEG DR - Segment drivability error mask
ADDR_DR - Address drivability error mask
DATA DR - Data drivability error mask
INTA TO - Interrupt acknowledge and timer out

error mask

CHIP_SEL -~ Chip select error mask

CS_REG - Chip select registers
MPCS - MPCS register

MMCS - MMCS register
PACS - PACS register
LMCS - LMCS register
UMCS - UMCS register

DMA CHO - DMA channel 0
CTRL_WD - Control word
TRNS_CNT - Transfer count
DP_UPPR - Destination pointer (upper four bits)
DP_LWR - Destination pointer (lower sixteen bits)
SP_UPPR - Source pointer (upper four bits)
SP_LWR - Source pointer (lower sixteen bits)

DMA CHl1 - DMA channel 1
CTRL_WD - Control word
TRNS_CNT - Transfer count
DP_UPPR - Destination pointer (upper four bits)
DP_LWR - Destination pointer (lower sixteen bits)
SP_UPPR - Source pointer (upper four bits)
SP_LWR -~ Source pointer (lower sixteen bits)

TIMERO - Timer 0
M/C_WD - Mode/Control word register
MAX CNTA - Max count A register
MAX CNTB - Max count B register
CQOUNT - Count register

TIMER]1 - Timer 1
M/C_WD - Mode/Control word register
MAX CNTA - Max count A register
MAX CNTB - Max count B register
COUNT - Count register

TIMER2 - Timer 2
M/C_WD - Mode/Control word register
MAX CNTA - Max count A register
COUNT - Count register

INT CNTR - Interrupt controller registers
INT3 - INT3 control register
INT2 - INT2 control register
INT1 - INT1l control register
INTO0 - INTO control register
DMAl - DMAl control register
DMAQO - DMAO control register
TMR_CTL - TIMER control register
INT STAT - Interrupt control status register
INT _REQ - Interrupt request register
IN_SERV - In-service register
PRI _MSK - Priority mask register
MASK - Mask register
EOI - EOI register
INT VECT - Interrupt vector register

TL/1 Support Programs:

QWK _RD Quick looping read
QWK_WR Quick looping write
QWK_ROM Quick ROM test
QWK_RAM Quick RAM test
QWK_RAMP Quick ramp
QWK_FILL Quick £ill

Pod Sync Calibration Data:

Sync Mode UUT Signal Edge of Signal Offset from Edge

ADDR ALE falling 0 ns
DATA ~DEN rising -30 ns
INTA ~DEN rising -50 ns

Appendix J
9100A/9105A Error
Numbers

INTRODUCTION J.1.

The 9100A/9105A associates an error number with each
possible error that the instrument can encounter during
operation. This association is system-wide. A given error has
the same error number in all facets of system operation.

Also associated with each error is an error message, which is a
string describing the error. For some errors, this error message
string is modified to reflect certain error parameters (for
example, if a file cannot be opened because it does not exist, the
error message will include the name of the file).

Normally, error numbers are invisible to the operator or
programmer, with only the error message displayed when an
error is encountered. However, some errors can be dealt with in
a TL/1 program, where it is more convenient to check error
numbers than message strings when particular errors are handled
differently.

ERROR NUMBERS J.2.

Figure J-1 contains only those errors that are relevant to TL/1
programming. The number of errors which can be generated by
the 9100A/9105A is much larger than this list; however, errors
not in this table cannot be intercepted by TL/1

J-1

programs. Also, error numbers from 900 through 999 are
reserved for user-defined errors, which are sometimes needed in
programs which deal with both system-specific and application-
specific errors.

Error messages which are modified to reflect the actual error
parameter(s) are shown with the error parameter(s) in italics.

The error numbers that appear in the following table are the
'err_num’' argument to the io_error fault. This fault is raised by
various I/O statements, including print and input.

Error Number Error
200 Path Table full
201 Bad Path Number
203 Bad Mode
207 Out of Memory
211 End of File
214 File Not Accessible
215 Bad Path Name
216 Path Name Not Found
218 Creating Existing File
220 Phone hangup occurred (modem)
237 Out of Memory
238 Directory not empty
241 170 error - bad disk sector number
242 Disk is Write Protected

Figure J-1: List of Error Numbers

Error Number

Error

243
244
245
246
247
248
249
250
251
252
253
255
300
301

302

303

I/0 error -- bad CRC verify

Read Error

Write Error

No disk in drive

Unreadable or unformatted disk
Disk Full

Incompatible Disk Type

I/0 Device Busy

Disk ID error

File record is busy (locked out)
Non-sharable file busy

Device is format protected; cannot format
IEEE-488 output buffer not empty

Operation requires an IEEE-488 address
list

Operation requires system controller
capability

Operation requires controller-in-charge
capability

Figure J-1: List of Error Numbers (cont.)

J-3

Error Number

Error

304
306
307
308
309
310
4000

4001
4002
4003
4004
4009
4010
4011

4012

4013

4014

IEEE-488 interface hardware is busy
Not configured for parallel poll
IEEE-488 transaction timed out
Operation requires controller capability
No listeners on the IEEE-488 bus
Cannot go to local in local lockout

110 attempted before any channels
opened.

Invalid BAUD Setting
Invalid Parity Setting

invalid Number of Parity Bits
Invalid Number of Stop Bits
file is write protected

file does not exist

Text files cannot be opened in update
mode

There is no Video Interface
There is no Operator Display

Ports and files cannot have windows

Figure J-1: List of Error Numbers (cont.)

J-4

‘ | Appendix K
9100 Series

Software Error Report Form

K-1

9100 SERIES SOFTWARE ERROR REPORT FORM

We would like to thank you for taking the time to let us know about any bugs you
encounter while using the 9100A or the 9105A. This information will help us in our
goal of providing the best possible products for our customers.

We suggest that you retain this form as an original and use a photocopy for reporting
a bug.

Name Date

Company

Department Mail Stop

Address

City/State/Zip

Country

Phone ()

Model: [] 9100A Serial Number:
] 9105A Software Version:

Pod In Use:

Description of Problem:

(Continued on next page)

What sequence of steps led to the problem?

What was displayed on the operator’s display when the problem was encountered?

Line 1:

Line 2:

Line 3:

Was the problem intermittent? Ol Yes [No

Were you able to work around the problem? If so, how?

Please return the completed form to:

John Fluke Mig. Co., Inc.
MR&D Sales Support
M/S 251E

Box C9090

Everett, WA 98206

Index

NOTE
TL/1 commands are not -listed in
this index. They are located

alphabetically in Section 3.

Address Space Options, 1-4
Annunciator control, B-3

Argument names, G-2, H-3

Arguments used with built-in tests, G-12
Arithmetic Operators, 2-12

Arrays, 2-11

ASCII Codes, A-1

Beeper control, B-4

Bit mask operators, 2-15
Bit shifting operators, 2-15
Block statements, 2-22
Bus test faults, G-8

Calibration, I-1

Case sensitive, 2-2, 2-3

Case, 2-2

Comment, 2-22

Conditional expressions, 2-17
Control codes, B-1

Cursor control sequences, B-2

Index-1

Data types, 2-8

Device list, 2-6

Device names, 2-4

Display attributes, B-2

Display characters for the monitor, B-5
Display mode sequences, B-2
Double-quote character, 2-10

Editing control, B-3

Erasing, B-1

Error Numbers
9100A/9105A, J-1

Error table, J-1

Esc key, B-1

Fault condition
arguments, G-2, H-6
handling, G-1
messages, H-6
raising, H-1
Fault message tables, H-6
File and directory names, 2-2, 2-3
Floating-point, 2-9
Functions, 2-20
IYO module and probe, 2-20
pod, 2-20
special, 2-20

Generating built-in fault messages, H-1
Generic faults, G-10

Handling built-in fault conditions, G-1
How to read fault message tables, H-5

170 module clip/pin mapping, E-1
Keypad mapping to TL/1 output, C-1
Logical operators, 2-13

Memory interface pod faults, G-9
Message variables, H-3

Monitor display, B-1

Name conventions, 2-2

Non-printing characters, 2-10
Numeric type, 2-8

Index-2

Numeric type, 2-8
Numeric values, 2-8

Operator's keypad mapping, C-1
Operators, 2-11

Order of evaluation, 2-16
Organization of manual, 1-2
Other built-in test faults, G-12

Parentheses, 2-17

Pin names, 2-7

Pin numbers, 2-7

Pod calibration and offsets, I-1

Pod related information, 1-2

Pod supplemental information, 1-4
Pod sync calibration data, I-6
Pod-specific set-up information, -2
Pod-specific setup information, 1-4
Primitive fault conditions, G-10
Programmer’s keyboard mapping to TL/1 input, D-1

Ram test faults, G-4

Ref pins, 2-7

Reference designator names, 2-7
Relational Operators, 2-12

ROM test faults, G-7

Simple statements, 2-22
Single quote character, 2-2
Software error report form, J-6
Special display characters, B-4
String

operators, 2-14
Symbols, H-2

used in displaying IC's, B-5

Tab stops, B-3

TLNA
language conventions, 2-1
reserved words, F-1
statement conventions, 2-22
support programs, 1-6

Type conversion operators, 2-21

Index-3

	Cover Sheet
	Table of Contents
	1 Overview
	2 TL/1 Language Conventions
	2.1 Name Conventions
	2.2 Data Types
	2.3 Arrays
	2.4 Operators
	2.5 Order of Evaluation of Operators
	2.6 Conditional Expressions
	2.7 Functions
	2.8 TL/1 Statement Conventions

	3 TL/1 Alphabetical Reference
	A
	abort
	acos
	arm
	ascii
	asin
	assign
	(assignment)
	assoc
	atan

	B
	bitmask

	C
	cflt
	checkstatus
	chr
	clearoutputs
	clearpatt
	clearpersvars
	clip
	close
	cnum
	compare
	connect
	cos
	count
	counter
	cwd

	D
	dbquery
	declare (block form)
	declare (statement form)
	define menu
	define mode
	define part
	define ref
	define text
	delete
	diagnoseram
	diagnoserom
	draw
	draw ref
	draw text

	E
	edge
	edisk
	enable
	end
	endif
	execute
	exercise

	F
	fabs
	fails
	fault
	filestat
	for
	fstr
	function
	fval

	G
	getoffset
	getpod
	getromsig
	getspace
	gfi
	goto

	H
	haltuut
	handle

	I
	ieee
	if (block form)
	if (statement form)
	input
	input using
	instr
	isflt
	isval

	L
	len
	level
	loadblock
	log
	loop
	lsb

	M
	mid
	msb

	N
	natural
	next

	O
	open

	P
	passes
	podinfo
	podsetup
	poll
	pollbutton
	polluut
	pow
	pretestram
	print
	print using
	probe
	program
	pulser

	R
	rampaddr
	rampdata
	random
	read
	readblock
	readbutton
	readdate
	readmenu
	readout
	readspecial
	readstatus
	readtime
	readvirtual
	readword
	refault
	remove
	reset
	resetpervars
	restorecal
	return
	rotate
	runuut
	runuutspecial
	runuutvirtual

	S
	setbit
	setoffset
	setspace
	setword
	shl
	shr
	sig
	sin
	sqrt
	stopcount
	storepatt
	str
	strobeclock
	sync
	sysaddr
	sysdata
	sysinfo
	sysspace
	systime

	T
	tan
	testbus
	testramfast
	testramfull
	testromfull
	threshold
	toggleaddr
	togglecontrol
	toggledata
	token

	V
	val

	W
	wait
	waituut
	winctl
	write
	writeblock
	writecontrol
	writefill
	writepatt
	writepin
	writespecial
	writevirtual
	writeword

	Appendices
	A ASCII Codes
	B Control Codes for Monitor and Operator's Display
	C Operator's Keypad Mapping to TL/1 Input
	D Programmer's Keyboard Mapping to TL/1 Input
	E I/O Module Clip/Pin Mapping
	F Reserved Words
	G Handling Built-in Fault Conditions
	H Generating Built-in Fault Messages
	I Pod-Related Information
	J 9100A/9105A Error Numbers
	K 9100 Series Software Error Report Form

	Index

